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Abstract—Groups of people with mobile phones using short
range connections like WiFi and Bluetooth to propagate messages
can be modeled as, with regard to regular absence of end-to-
end connection, Delay Tolerant Networks (DTNs). The study
of message transmission speed in such kind of networks has
attracted increasing attention in recent years. In this paper, we
present a realistic framework to model the message propagation
process, and give a detailed expression of average information
dissemination delay based on message size, users’ selfishness,
number of involved subscribers and other related parameters.
We apply our model to real-life traces to assess its reliability by
comparing the theoretical results with measured statistics, and
present extensive upshots to evaluate the influence of various
parameters on system performance.

I. INTRODUCTION

With the increasing use of smart mobile devices which offer

ubiquitous Internet access and diverse multimedia authoring,

mobile traffic is growing at a fantastic speed. Many researchers

from networking and financial sectors predict that by 2014,

broadband mobile users’ average traffic consumption will be

7GB which is 5.4 times more than the consumption of users

nowadays and the total mobile data traffic throughout the

world will be 39 times larger [1]. Using mobile phones with

short range connections to help with propagating the mobile

traffic is one of the solutions to the explosive traffic growth

problem.

Delay Tolerant Networks (DTNs) offer valuable insights

into this study of message propagation process, as they take

the general lack of end-to-end path property into consideration,

which is caused by sparse node density and unpredictable node

mobility. The store-carry-forward strategy [2] has been utilized

in such kind of network by allowing nodes to store the message

before passing it on to the next node. Numerous works have

taken advantage of DTNs to set up their own models under

various conditions, including: vehicular ad hoc networks [3],

deep-space interplanetary networks [4], underwater networks

[5], military networks [6], etc.

Yet, to study DTNs’ various characters, while challenging,

is still a meaningful task. Some of the fascinating characters

involve: the relationship of message size and transmission

delay, what impacts an increasing number of nodes brings

about when infecting ratio is definite, whether making all

people willing to transmit the information could significantly

shorten the message dissemination delay and so on. Thorough

discussions of above questions would offer great help for

efficiently transmitting information within a short time at

lowest cost.

Some related work has already been done in this realm.

Early works commonly focused on evaluating the perfor-

mance of epidemic routing schemes by using simulation

which inevitably endowed their research confined to a limited

aspect without regarding the influence of various parameters

[7]. More recently, several models based on edge-Markovian

dynamic graphs have been proposed to compute the average

dissemination delay or successful transmission probability

[2][8][9]. However, these papers either ignored the impact of

nodes’ social selfishness or based on the simple assumption

that connectivity graph evolves in discrete time. Moreover, all

of them failed to capture an important correlation between

dissemination delay and message size.

We propose a more actual model by taking realistic

properties into consideration. Unlike recent works [10][11],

we apply exponential distribution both to contact and inter-

contact periods to quantify the impact of message size as

larger messages usually require longer contact period to

propagate. We also consider other social characters including

distinct inter-contact periods, as various people might exhibit

totally different behaviors owning to their working, living

place and friends circle. Thus they should be divided into

different groups according to their communication intervals

with each other. On the other hand, sometimes people would

be unwilling to forward a message to others due to energy and

storage constrain or prefer to forward information to people

in the same group with them. Such two kinds of activities are

called individual selfishness and social selfishness respectively

[12]. In our model, we concentrate on social selfishness which

has a considerable effect on communication between groups.

We compare our theoretical insights to results obtained from

two real traces, RWP in the ONE simulator and Reality

from the Reality Project of MIT. Finally, we quantify the

influence of the number of nodes on the system performance

(i.e. assess the parameter’ influence on average dissemination

delay in this paper) to find whether they would help in the

message propagation strategy design.



II. RELATED WORK

In the past decade, lots of people have contributed to the

study of message propagation process. Vahdat et al. [13] first

introduced the concept of epidemic routing where random

pair-wise exchanges of messages among mobile hosts ensure

eventual message delivery. Juang et al. [7] distributed custom

tracking collars on animals across a wild area trying to use

the least energy, storage, and other resources necessary to

maintain a reliable system. Later Fall proposed the DTN

model to study the networks that lack continuous connectivity,

which has been widely used ever since [5]. Shortly after that,

Markovian models were exploited to evaluate the performance

of epidemic routing [14][15][16]. Chaintreau et al. [17] used

simple sequences of uniform random graphs for modeling

random temporal graphs to analyze the diameter of oppor-

tunistic mobile networks. Groenevelt et al. [15] proposed

a stochastic model based on the number of nodes and the

parameter of an exponential distribution to estimate message

delay accompanied with comparison of analytical results to

simulation results obtained from three different mobility mod-

els. By using ordinary differential equations (ODE), Zhang

et al. [2] investigated how resources such as buffer space and

the number of copies made for a packet can be traded for

faster delivery. More recently, Li et al. [12] defined a metric

of selfish factor to evaluate the impact of social selfishness in

DTNs.

Clementi et al. gave theoretical upper and lower bound for

flooding time (i.e. completion time of the flooding mechanism

aiming to broadcast a piece of information from a source node

to all nodes) by dividing the flooding process into distinct

phases [9]. They proved that after t = O( log n
log(1+np) ) time

steps, the number of informed nodes was at least βn with high

probability by Chernoffs bound, and then after O( log n
log np ) time

steps with high probability all the nodes would be infected,

where n represents the number of nodes and p stands for edge-

birth rate. Compared to their work, we offer explicit results

for average dissemination delay rather than vague upper and

lower bound barely useful under the condition of numerous

nodes. In addition, our model takes various social characters

into consideration and can be used to calculate the situation

when only a part of nodes need to be infected.

On the assumption that connectivity graph evolves in

discrete time, Whitbeck et al. [8] exploited state transition

matrix to calculate the rate of successfully infecting a certain

destination node within a limited period of time upon various

bundle sizes. They gave accurate estimation for successfully

transferring probability for α ≤ 1 (i.e. bundle size), an upper

and lower bound for α > 1 and then compared theoretical

results with measured data obtained from Rollernet Trace.

Unlike their work, we present average dissemination delay

rather than successful transmission rate. Moreover, Our

premise of continuous evolving connection graph is more

justifiable than their discretely evolving graphs assumption.

The starting point of our work is [11], which presented a

method to calculate the dissemination delay without regard

to message size and infecting ratio. In this paper, we set up

an integrated model that could be used to quantify various

parameters’ effect on the transition delay as well as applied

to real-life trace.

III. SYSTEM MODEL

Due to nodes’ distinct location properties and professional

affiliation in DTNs, they should be divided into various non-

overlapping groups. However, discussing such a complex

situation is far from easy, as we have to pay attention to the

number of infected nodes in each group. In this paper, we

mostly focus on two-group case which can easily be extended

to multiple-group case.

A. Communities

We divide all the nodes in the network into two communities

A and B. Nodes in the same group are more likely to set

up a connection than across distinct groups which means a

longer geographical distance and less probability of meeting

each other. We assume there are N nodes in A, M nodes in B,

and a node in A gets the original message initially. Our main

purpose is to model the single message’s propagation process

in these two communities.

B. Link Generating and Perishing Model

All links joining every two nodes in the network have

contact and inter-contact periods, and transmission of the

message can only occur in contact period of a link which

connects an infected and an uninfected node. We assume

every contact period as well as inter-contact period follows an

exponential distribution with intensity μ and λ respectively,

which is widely used in modeling opportunistic DTNs [18].

We define intra-group link generating (perishing) speed as λ1

(μ1) and inter-group link generating (perishing) speed as λ2

(μ2). Usually λ1 is larger than λ2.

C. Bundle Size

A small message can always be transmitted once a link

comes into existence. However, in a realistic DTN, it can be a

different case with regard to diverse message sizes. To be more

specific, propagating text information could always be finished

before deadline, while infecting another node with a video is

seldom completed within one contact period. We assume that

all links, when up, have equal capacity and once the message

is not successfully sent, next time the transmission will still

restart from the scratch. We refer to α, which represents

the time needed to transmit a message as its bundle size.

According to exponential law’s character, the probability of

a contact period being greater than α can be calculated by the

following integral: ∫ +∞

α

μe−μtdt = e−μα (1)

.

Therefore, on average a message with size α is transmitted

with probability e−μα through that link once it comes into



existence. In other words, after a link has been connected for

1/e−μα times, the message has a high probability of being

transmitted. It thus could be interpreted as the link generating

speed decreases to λe−μα, or λ1e
−μ1α for intra-group link

generating speed and λ2e
−μ2α for inter-group link generating

speed.

D. Social Selfishness

When social selfishness is taken into consideration, it

will undoubtedly affect the message propagating rate [12].

We assume on average the intra-group and inter-group

probability of people willing to forward a message is p1 and

p2 respectively. Consequently, the intra-group link generating

speed changes to p1λ1e
−μ1α while the inter-group link

generating speed changes to p2λ2e
−μ2α.

IV. ACHIEVING DISSEMINATION DELAY

Unlike previous works which mostly concentrate on for-

warding a message to a single destination, we are interested

in the average delay for a portion of nodes in A being infected.

We refer to r (0 < r < 1) as the percentage of nodes required

to infect. Assuming i stands for the number of nodes being

infected in A and j for B. As present state relies only on

previous state, the nodes in both A and B as well as all the

the links make up an edge-Markovian dynamic graph. The

Markov chain has the following (�rN�−1)(M+1)+1 distinct

states:

(1) States (i, j): 1 ≤ i ≤ �rN� − 1 and 0 ≤ j ≤ M , these

states are transient.

(2) State Succ: this is an absorbing state which indicates at

least rN nodes in A are infected.
We define Pi,j→succ as the probability of transition from

the state (i, j) to the state Succ; define Pi,j→i′,j′ as the
transition probability from state (i, j) to (i′, j′). While such
two probabilities vary according to the intermediate time t,
when t is relatively small, they are also functions of the
following primitives. Given two sets of nodes U and W, if
every node in U is able to infect each node in W with
probability p, then the odds that m nodes in W will be infected
is computed as follows [8]:

Pinf(m, p, |U | , |W |) = Cm
|W |(1 − p)|U|(|W |−m)(1 − (1 − p)|U|)m.

(2)
Thus, we can get

Pi,j→succ =
NP

n=�rN�

n−iP

m=0

Pinf(m, p1λ1e
−μ1αt, i, N − i)

×Pinf(n − i − m, p2λ2e
−μ2αt, j, N − i − m)

(3)

Pi,j→i′,j′ =
i′−iP

m=0

j′−jP

n=0

Pinf(m, p1λ1e
−μ1αt, i, N − i)

×Pinf(i
′ − i − m, p2λ2e

−μ2αt, j, N − i − m)
×Pinf(j

′ − j − n, p2λ2e
−μ2αt, i, M − j − n)

×Pinf(n, λ1e
−μ1α, j, M − j)

(4)

According to the definition of continuous Markov chain,

every element of transition rate matrix Q is associated with

Fig. 1. The transition of every involved state in Markov chain.

transferring probability p as exhibits:

qi,j→i,j = − lim
t→0

1−pi,j→i,j(t)
t ,

qi,j→i′j′ = lim
t→0

pi,j→i′j′ (t)
t (i �= i′orj �= j′),

(5)

where element qi,j→i′,j′ represents the transferring speed from

state (i, j) to state (i′, j′), qi,j→i,j is derived from the negative

sum of every other element in the same row, while the state

in front of the arrow stands for the row and the state after the

arrow stands for the column of Q.

We define V = �rN� − 1, K = V (M + 1), Q could also

be divided into several sub-matrixes in the following form:

Q =
[

T R
0 0

]
,

where T is a K × K matrix, R is a K × 1 matrix denoting
the transition rate from transient state (i, j) to absorbing state
Succ. The all-zero 1 × K matrix in the left results from the
fact that absorbing state Succ will never migrate to a transient
state, whereas the element 0 on the right side is attributed to
the negative sum of every single element of the left all-zero
vector. Based on the above upshots, we could acquire every
element of T as follows:

t((i,j),(i,j)) = −(λ1i + λ2j)(N − i) − (λ1j + λ2i)(M − j),
(1 ≤ i ≤ V, 0 ≤ j ≤ M),

t((i,j),(i+1,j)) = (N − i)(jλ2 + iλ1), (1 ≤ i ≤ V − 1, 0 ≤ j ≤ M),
t((i,j),(i,j+1)) = (M − j)(jλ1 + iλ2), (1 ≤ i ≤ V, 0 ≤ j ≤ M − 1),

(6)

where λk is an abbreviation for pkλke−μkα (k = 1, 2), and all

the other elements in the matrix are zero. According to T and

Q, the transition relationship of every involved state is shown

in Fig. 1.

Denote GD(t) as the probability that the Markov chain

does not arrive at absorbing state from initial state (1,0) at

time t, then the average delay (the average time to get to
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(d) Transmission Willingness

Fig. 2. The theoretical result and measured dissemination delay upon various parameters in RWP. When unspecified, λ = 6.1083e − 6, μ = 0.0037,
N = 200, penc = 0.1, r = 0.9, p = 1, α = 220.

absorbing state) can be derived as Dd =
∫ ∞
0

GD(t)dt. From

[12], we can get that GD(t) = e · exp(Tt) · I , consequently

Dd = e · (−T−1) · I , where e is a vector denoting the initial

state probability vector e=[1, 0, 0, . . . , 0] and I is an all-one

vector I=[1, 1, . . . , 1].

V. MODEL VALIDATION

In order to evaluate the accuracy of our model, we apply it

to mobility environment. As involved communication devices

are basically the same in corresponding range and forwarding

willingness in each trace, we simplify our model to a one-

group situation (barely contains group A) to get the simulation

results more precisely. In order to mitigate the effect brought

about by the unequal capacity of the nodes that are randomly

chosen, we assume a part of nodes rather than a single node

in A is initially infected.

A. Methodology

We use Random WayPoint (RWP) model in the Oppor-

tunistic Networking Environment (ONE) simulator [19] with

parameters set as follows: the number of users N is 200;

simulation area is 500 × 500 m2; nodes’ mobility speed

varies from 0.6 to 1.4 m/s; and link generating speed λ is

0.003. In this scenario, we get the link generating speed λ
as the reciprocal of average inter-contact period while link

perishing speed μ as the reciprocal of average contact period.

Other parameters including bundle size α, percentage of nodes

originally infected penc, ratio of nodes ought to be infected

r and forwarding willingness p could be set optionally. With

all the parameters above, we can use our model to get the

theoretical result of average dissemination delay. On the other

hand, the actual delay is obtained by replaying the propagation

process: when two nodes’ contact period is longer than α, the

message is, with probability p, transmitted; and when at least

rN nodes have been infected the process is ended. Now we

quantify the distinction between theoretical results and actual

delay upon a large variety of parameters.

B. Results

Fig. 2(a) compares the measured delay with the theoretical

results of the model on various message sizes. We can see

that, for 100 ≤ α ≤ 260, the measured delay and the

theoretical results do match well and the Mean Squared Error

(MSE) is about 0.037. When α is larger than 260, due to

small-world effects, our model is over optimistic. However, as

generally it is unlikely for such big messages to appear, our

model still offers a precise estimation for average delay upon

various message sizes. Fig. 2(b) shows that with increase of the

percentage of nodes infected originally, both curves decreases

almost linearly and MSE for these two curves is 0.079. As

the ratio of nodes ought to possess the message comes near to

1 in Fig. 2(c), the average delay increases dramatically with

a MSE of 0.1058 for measured delay and theoretical result.

The almost horizontal curve when p is relatively large in Fig.

2(d) demonstrates that promoting forwarding willingness to 1
hardly worth its effort. The diversification between theoretical

result and measured delay in this picture is also comparatively

small with regard to a MSE of 0.1084.

These results show the accuracy of our model, and it does

reflect properties of real-life message forwarding process.

Thus exploiting our model to assess the influence of various

parameters could offer valuable insight into the study in DTN

real-life message propagation process.

VI. PERFORMANCE EVALUATION

In this section, we return to the two-group situation and

quantify the performance of information dissemination delay

derived from the proposed model to evaluate various parame-

ters’ influence. The parameters are set as follows, λ1 = 1/400,

λ2 = 1/1000, μ1 = 0.8, μ2 = 1, r=0.8, N=50, M=50,

p1 = 0.8, p2 = 0.6.

Figs. 4(a), (b) and (c) describe the relationship between

average dissemination delay and the number of nodes for

unequal message sizes. Fig. 4(a), in which the number of nodes

in A and B increases simultaneously, shows that the average

delay astonishingly degraded with the growth of N and M.

Such a phenomenon might be attributed to the fact that each

new node is a potential relay in the epidemic graph that might

help in the spreading of message. Fig. 4(b) plots the average

delay as a function of number of nodes in A while B’s nodes

remain static. It shows that, as N increases, the positive effect

of A’s new nodes alone working as relays could overweight, as

ratio r remains static, the negative effect brought about by the

growth in the number of nodes ought to be infected. Compared

to Fig. 4(b), Fig. 4(c) illustrates that the increase of nodes in B
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(c) Number of nodes in B

has a slighter effect over average delay, because B’s nodes can

hardly help to infect nodes in A as they are seldom connected

concerning the rather small inter-group link generating speed.

Now we conclude from above upshots that the increase

of number of nodes can remarkably decrease the average

delay instead of increasing it when infecting ratio r is definite.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a framework to evaluate the

performance of information dissemination in delay tolerant

networks. We apply this model to RWP model, and the

results demonstrate it accurate to model the system. We

also give theoretical results showing the influence of various

parameters. We are now trying to apply more complex

distributions to contact and inter-contact periods to obtain

a more comprehensive model. Besides, utilizing our model

to estimate the successful transmission rate within a limited

period of time might also deserve a great deal of work in

future.
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