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Abstract—Participatory sensing is becoming more popular
with the help of sensor-embedded smartphones to retrieve
context-aware information for users. However, new challenges
arise for the maintenance of the energy supply, the support of the
quality-of-information (QoI) requirements, and the generation
of maximum revenue for network operator, but with sparsely
research exposure. This paper proposes a novel efficient network
management framework to tackle the above challenges, where
four key design elements are introduced. First is theQoI
satisfaction index, where the QoI benefit the queries receive
is quantified in relation to the level they require. Second is
the credit satisfaction index, where the credits are used by the
network operator to motivate the user participation, and this
index is to quantify its degree of satisfaction. Third is theGur
Game-based distributed energy control, where the above two
indexes are used as inputs to the mathematical framework of
the Gur Game for distributed decision-making. Fourth is the
dynamic pricing scheme, based on a constrained optimization
problem to allocate credits to the participants while minimizing
the necessary adaptation of the pricing scheme from the network
operator. We finally evaluate the proposed scheme under an
event occurrence detection scenario, where the proposed scheme
successfully guarantees less than 7% detection outage, saves 80%
of the energy reserve if compared with the lower bound solution,
and achieves the suboptimum with only 4% gap if compared
with optimal solution.

I. I NTRODUCTION

The past several years have seen the astounding proliferation
of affordable, wireless, and easily programmable mobile com-
puting and communication devices such as smartphones and
now, tablet computers. While integrated media and location-
tracking features (e.g., cameras, GPS receivers, accelerome-
ters, etc.) have become standard fare, one can expect a rapid
increase of other “sentient” functions via additional integrated
or peripheral environmental sensors; examples include sensors
for measuring pollen, air-pollutants, humidity, etc. Overall,
these advancements are bringing forth the “participatory sens-
ing” model, in which participants use personal mobile com-
puting devices to collect, possibly analyze, and make available
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paper largely extends previous contributions quite distinctly focusing on the
participatory sensing with the novel system architecture,credit estimation and
allocation, and its involvement into the distributed decision making process,
with extensive simulation results.

nearby environmental data for large-scale applications. No-
table examples include using smartphones to monitor road and
traffic conditions [1], [2] and locate habitat-destroying plants
and animals [3].

Our work is motivated by the application scenario shown in
Fig. 1, which is also derived from the smartphone-based micro-
blogging system described in [4]. Fig. 1 shows a population of
mobile device users subscribing to a wireless service provider
(or network operator) and a user (orquerier) of a participatory
sensing application offered by the network operator. The
querier asks the application for some information about a
landmark, such as the size and location of crowds near a
tourist site. The application then forwards the query to the
mobile device users near the site. Upon receiving the query,
mobile device users decide whether they will respond and
send data back to the application, where data processing may
occur before a result is returned to the querier. The users who
supplied data would receive some form of credit from the
service provider as a reward for supporting the efficacy of the
application.

Supporting application scenarios such as the one above
requires addressing the following challenge:balancing the
quality of information produced by the system with its energy-
efficiency, while providing satisfactory benefits to the querier,
network operator, and participants. Quality of information
(QoI) represents a (set of) metric(s) to judge if information is
fit-for-use for a particular purpose [5], [6]. For example, the
QoI of the “crowd identification” response above may include
factors such as latency, proximity, and accuracy, the last of
which may be a factor of the quality of photos taken at the site.
Unfortunately, increasing QoI generally increases the energy
usage of mobile devices collecting the data. For example, a
high quality response in the scenarios above would most likely
require video from a plurality of devices, not just one.

While the problem above also exists for traditional sensor
networks, it is compounded in the participatory sensing context
for multiple reasons. First, as opposed to traditional sensor
“motes,” smartphones (and the like) are not dedicated sensor
devices and have competingtraditional demands for energy
resources (e.g., voice calls, text messages, and gaming). Sec-
ond, smartphones arepersonaldevices upon which any outside
party cannot expect to impose traditional sensor network en-
ergy management mechanisms such as duty cycling and power
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Fig. 1. The considered participatory sensing scenario, where smartphone 1’s user request for contextual information of interest is directed to a set of users
labeled as 2-6 within the proximity. Some users decide to participate via contributing certain type of contextual information, for example, text message, voice
clip, image, and video, while others may decide not to participate.

state control; only the device’s user can control energy usage.
However, as described in the earlier application scenario,
incentive-based techniques may be used to influence energy
usage on personal devices and furthermore, help balance QoI
and energy-efficiency. These challenges and general approach
serve as the basis for our work.

This paper proposes a novel QoI-aware energy-efficient
network management framework for participatory sensing.
Our solution approaches the problem from two angles, the
first being that of the network operator. Here, the goal is to
maximize the QoI of the system by maximizing the partici-
pation of mobile device users, while minimizing the cost of
doing so, via minimizing the credits granted for participation.
We model this as a constrained optimization problem and
quantify the QoI benefit that queriers receive in relation to
the level of QoI they request as theQoI satisfaction index.
The second angle of our approach relates to the mobile device
user. Here, we propose a distributed scheme for deciding
both the device’s energy consumption state and the quality
of data to contribute to the application. For this, we employ
the mathematical framework of the Gur Game [7], [8], where
notions of reward and punishment, represented by credits and
energy loss respectively, locally guide the balance between
QoI and energy-efficiency.

The rest of the paper is organized as follows. In Section II,
we highlight related research activities. Section III establishes
a formal model of our system. Section IV and Section V
describe the QoI satisfaction index and credit expectation
index. Section VI introduces the overall network management
framework, followed by the Gur Game based distributed
energy management scheme in Section VII. Finally, Section IX
concludes the paper and presents the future work.

II. RELATED WORK

Recently, there are a number of emerging applications for
smartphone sensing. Sensor-equipped vehicles are used to

detect and report the surface conditions of roads [1], [2]. “E-
SmallTalker” was presented in [9] to facilitate the stranger
social networking. EnTracked [10], based on the estimation
and prediction of system conditions and mobility, schedules
position updates to track pedestrian targets equipped with
GPS-enabled devices. The economic model of user partic-
ipation incentive was studied in [11], by proposing reverse
auction dynamic price with virtual participation credit mech-
anism where users can sell their sensing data to a service
provider. Our work is largely motivated by “Micro-Blog”
in [4], allowing smartphone-equipped users to generate and
share geo-tagged multimedia. However, different from [4],we
aim at addressing challenges related to system management
experienced by network operators and smartphone users. Our
goal is to explore the mathematical framework of managing
the energy reserve in a distributed way while providing satis-
factory levels of QoI and maximum revenue for the network
operators simultaneously.

Regarding the energy-aware sensor network platforms,
network-wide solutions like Lance [12] require centralized
control. For distributed solutions, EEMSS in [13] presented
a sensor management scheme that selectively turns on the
minimum set of sensors to monitor user state and triggers
a new set of sensors if necessary to achieve state transition
detection. Catnap [14] allowed sensors to sleep during data
transfers, and exploited high bandwidth wireless interfaces by
combining small gaps between packets into meaningful sleep
intervals. On the other hand, Collaborative energy management
was addressed in [15], where network-wide energy decision
making is enabled. Finally, our previous work [16] proposed
a generic network management framework through negotia-
tions among queries and network resource, by estimating the
network capacity in a QoI friendly fashion and monitoring
the level of received QoI in real-time, but without any of the
energy issues addressed thus far.

Regarding the energy management research for traditional
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sensor networks, work [17] was the first work to use the
mathematical paradigm of the Gur Game [7], [8] to dynami-
cally adjust the optimal number of sensors to operate. This
approach provides a useful distributed approach while the
optimal operational status was achieved through a few steps
of iteration. Later, the Gur Game was extended in [18], where
an energy-aware algorithm was developed, and the periodic
sleeping mechanism was introduced. Ref. [19] also used a Gur
Game formulation to maximize the number of regions covered
by sensors. Apart from the Gur Game approach, paper [20]
proposed a distributed low power scheduling algorithm for
sensor nodes to determine its active time slots in a TDMA
mechanism working on top of a slotted CSMA network. In
[21], the authors improved the overall performance of the
WSNs through local collaborations of neighbor nodes, and
provide a more efficient duty-cycle management solution; [22]
proposed a distributed topology control technique to schedule
nodes’ wake-up time slots. However all these duty-cycling
schemes lack a clear notion of QoI, and if under the context
of participatory sensing, the impacts from the human behavior
and the revenue from the network operator should be also
considered; and these primarily drive our research in this
paper.

III. SYSTEM MODEL

This section presents a formal model for describing our
efficient network management system. We consider a scenario
as shown in Fig. 1 comprising both the smartphone user 1 as a
querier and a set ofN smartphone users within the proximity
of user 1’s site of interest, as the participants, denoted as
N = {i = 1, 2, . . . , N}. Let q represent the querier’s query,
and letQ be the collection of all currently outstanding queries.
The queryq is processed by the network operator and results
in a request for a sensing services from participant users.
Such service requests may include, for example, retrieval of
image(s) from a tourist attraction, of information about an
event occurrence, traffic conditions, etc.1 Each requestq is as-
sociated with one or more high-level QoI attributes, such asthe
required degree of query understanding, where different types
of information from multiple sensing sources collaboratively
provide asingle view of the query understanding. In other
words, we provide a mapping from the retrieved information to
the overall degree of query understanding, e.g., realtime videos
are more likely to provide a higher degree of understanding
than sending texts alone.

We use the superscriptr to denote a QoI attribute value
required (and declared) by a query upon their arrival for
service, anda for that valueattained after the participatory
sensing, e.g., letur

q andua
q denote the required and attained

degree of event understanding, respectively, regarding the
queryq. Finally, we denote the types of contextual information
users could contribute as the setC (of size|C|), which include,
but not limited to, images and video clips with different resolu-
tions, voice clip and text messaging, etc. For each smartphone

1For simplicity reasons, for the rest of the presentation we assume that each
smartphone user will help with one query at a time.

user, we further denoteciq ∈ C, ∀i ∈ N , as therecommended
type of information by the proposed automaton (see Section
VII) embedded on each smartphone. However, we are also
interested in exploring the potential human impacts on the
decision-making process. In other words, the recommended
action ciq may not be finally taken, but the user may choose
ĉiq instead. We model this human behavior in Section VI.
After all information is gathered from participants, the network
operator aggregates and passes it to the querier. Clearly,
different combinations of information sources would result in
different degrees of understanding the service, like videoand
image would be more likely better than texts alone. We next
in Section IV introduce a metric to measure this degree of
satisfaction between the attained information and its required
level.

IV. QOI SATISFACTION INDEX

For convenience, we start with the satisfaction index from
[16], adjusted to the system model of this paper. As its
name implies, this index is used to describe the level of QoI
satisfaction the queries received from the participatory sensing
among smartphone users. It is applicable to each queryq ∈ Q
and for a specific QoI attributeu, the attained measurement
is computed as:

ua
q = f

(

{ui,a
q }i∈N

)

, ∀q ∈ Q, u ∈ u, (1)

whereu represents multi-dimensional QoI requirements, one
of which u could be the event understanding requirement.
Mappingf denotes the information fusion algorithm running
at the network operator, aggregating multiple pieces of infor-
mation to a single view of the event. Then, the network-wide
QoI satisfaction index for QoI attributeu is denoted as:

θuq , tanh
(

kθ ln
ua
q

ur
q

)

, ∀q ∈ Q, u ∈ u, (2)

where kθ denotes a scaling factor. The selection of the
functionsln(·) andtanh(·) is rather arbitrary but result in the
intuitively appealing and desirable behavior for satisfaction.

Therefore, the overall QoI satisfaction indexIQoI
q for any

query with multiple-QoI requirements during the service ofthe
participatory sensing can be defined by taking the minimum
of all QoI satisfaction indexes for each QoI attributeu ∈ u,
i.e.,

IQoI
q = min

u∈u
θuq ∈ (−1, 1), ∀q ∈ Q. (3)

It follows immediately from the definition of the QoI satisfac-
tion index that:

Lemma 4.1:For any participatory sensing query, its (multi-
ple) QoI requirements are simultaneously satisfied if and only
if IQoI

q ∈ [0, 1), ∀q ∈ Q.

V. CREDIT ESTIMATION AND ALLOCATION

One problem of using participatory sensing for information
retrieval is to motivate the users’ participation. Similarto
[11], we use thecreditsto encourage the participation, but we
explicitly link the amount of credits payable to the users with
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Fig. 2. The block diagram of the proposed dynamic pricing scheme.

the revenue the network operator may gain through adjusting
its inherited pricing scheme. Therefore, this section deals with
estimating the amount of credit that the network operator
allocates through dynamic pricing schemes to participants.
From the network operator’s perspective, the total revenue
needs to be maximized while meeting the satisfactory levels
of the credit expectations for all participants. Nevertheless, the
users may not disclose their credit expectations in advance
to the network operator before the service of the query, or
usually users may only vote for satsifaction/dissatifaction after
the service and the credit is paid, like the telephone customer
services. This primarily drives the need of the network opera-
tor to predict the expected future credits through the payment
history, and meet the users’ expectations during the voting.

Since queries sequentially arrive for service, we employ the
exponential smoothing method taking only the most recent
payment history to predict the next expected credit from
participants. Letϕ̂i,r

q−1, ϕ
i,r
q−1, ∀i ∈ N , denote the predicted

and actual credit requirement of the previous queryq − 1,
respectively. Then, the new expected creditϕ̂i,r

q , is estimated
through:

ϕ̂i,r
q = (1− µ)ϕ̂i,r

q−1 + µϕ
i,r
q−1, ∀i ∈ N , q ∈ Q, (4)

whereµ ∈ (0, 1) is the weight factor. Next is to decide the
pricing plan at the network operator to determine the exact
amount of credits payable to each participant, and we assume
it is represented by the mappingωq : ĉiq → ϕi,a

q . The goal of
the network operator is to minimize the sum of mean square
errors incurred by imperfect credit predications in (4) through
adapting the pricing planωq over time. Given that the change
of the pricing plan is not favored by the network operator, we
formulate the following optimization problem as:

ω∗
q = argmin

ωq

1

N

∑

i∈N

{

ϕ̂i,r
q − ωq(ĉ

i
q)
}2

subject to:

∥

∥

∥

∥

ωq − ωq−1

ωq−1

∥

∥

∥

∥

≤ δ, (5)

whereδ denotes the maximum allowed percentage of adapta-
tion from the network operator. The inputs to this optimization
problem are the retrieved information̂ciq and estimated credit
requirementŝϕi,r

q , while the output is the overall pricing plan
ω∗
q rewarding the contributions of the participants. Fig. 2

shows the block diagram of the proposed dynamic pricing
scheme.

We conclude this section by introducing, in a manner analo-
gous to the QoI satisfaction index, thecredit satisfaction index,
Ii,ωq , ∀i ∈ N , to represent the degree of credit satisfaction for

individual smartphone user, and it is computed as:

Ii,ωq , tanh

{

kω ln
ϕi,a
q

ϕ
i,r
q

}

, ∀q ∈ Q, i ∈ N , (6)

whereϕi,a
q = ω∗

q(ĉ
i
q) andkω is a scalar. The higher value of

this index represents the higher degree of credit satisfaction for
user i. We show in the next section how the QoI and credit
expatiation index are used to link the network operator and
smartphone users for both the energy and QoI-aware network
management.

VI. N ETWORK MANAGEMENT FRAMEWORK

In this section, we describe the novel framework of the
proposed efficient network management approach, which is
collaboratively achieved by the network operator (who coor-
dinates the participatory sensing tasks) and smartphone users
(who make their decisions in a distributed way).

Without loss of generality, suppose a smartphone user gen-
erates the queryq with multi-dimensional QoI requirements
and sends the service request to the network operator through
access communication networks like 3G, after which the
request propagates towards (candidate) participant usersin the
vicinity of the site of interest. As discussed earlier, there is no
central controller controlling the decision of participation for
each smartphone user; nevertheless, the decision is likelyto be
influenced by both the network operator through incentives,or
the credits in our proposal, and the human behavior. For each
user, we use the mathematical model of the Gur Game [7], [8],
[17] to iteratively achieve the long-term balance between the
maintenance of the energy and the support of QoI, as presented
in Section VII. We preset the total number of iterations asJ .

We next describe the overall structure of the proposed
network management framework. For queryq at each iteration
stepj ∈ {1, 2, . . . , J}, the network operator runs the embed-
ded information fusion algorithm in (1). Then, it computes
and outputs the level of achieved QoI, orIQoI

q (j) in (3), and
the credit expectation index, orIi,ωq in (6). Note that the latter
index does not change over iterations. These will be used as
the inputs to the Gur Game embedded in each smartphone
(see Section VII) to compute its energy-consumption state
at stepj + 1. Next, the network operator collects the new
participating information and compute the attained level of QoI
again, triggering the new round of iteration. After a few steps
of iterations, the output of the Gur Game will recommend each
smartphone user the type of contextual information, denoted
asciq ∈ C, ∀i ∈ N .

While the outcome of the Gur Game recommends the
optimal type of contextual informationciq that the smartphone
should send, its (human) user may decide otherwise. We next
study the impact of the human action. Specifically, we model
the human behavior by a simple ON-OFF process (see Fig. 3):

ĉiq =

{

ciq, if in “agree” state,
∅, others,

(7)

where ĉiq = ∅ represents that users decide to remain idle.
One example is to implement a human interface, like button
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click, on the smartphone to ask for decision approval from
users. Then, statistically the inherited transition matrix could
be represented by:

P =

(

1− p p

1− q q

)

(8)

where the first entry is the disagreement state and the second
entry is the agreement state.

Finally, the network operator pays off the credits to the
participants according to (5) and receives the service fee from
the querier. The amount of service fee, denoted byϕq, should
be at least the amount paid to all participants to keep gaining
the revenue, as:

ϕq ≥
∑

i∈N

ϕi,a
q , (9)

or equivalently the network operator generates the revenue:

revenue= ϕq −
∑

i∈N

ϕi,a
q . (10)

Detailed descriptions of how retrieved informationĉiq is ob-
tained from each user is presented in the following Section VII.

VII. G UR GAME-BASED DISTRIBUTED ENERGY CONTROL

In this section, we describe the proposed distributed energy
management scheme for each smartphone user within the
proximity of the site of interest, through the mathematical
model of the Gur Game. Followed by the introduction of
the Gur Game, we propose our pay-off structure and present
how the decision is made distributedly. Fig. 4 shows the flow
diagram of the proposed automaton for each smartphone user,
which decides its duty cycling decision̂ciq, ∀i ∈ N .

A. The Gur Game

The mathematical model of the Gur Game [17] adopted was
first used to power on a desired number of wireless sensors in a
region, where each sensor votes distributedly for being active
at each iteration, and the gradually converge through a few
steps of iterations. We now briefly introduce the fundamental
concept and how our proposed system behaves.
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Fig. 5. An example of the Gur Game with associated memory sizeM = 2,
where positive number states give the corresponding outputof the contextual
information for useri, e.g., text message, low resolution image, or high
resolution image. Negative numbers state represent “no participation” decision
of the user.

We assume thatall smartphrones are associated with a finite
discrete-time automaton with the same length of memoryM ,
as shown in Fig. 5. This automaton is a single nearest-neighbor
Markov chain of memory size2M . Starting from the left-most
state, the states are numbered from−M to −1, then followed
by numbering1 to M to the right-most state. We denote these
2M energy consumption states asS = {±s|s = 1, 2, . . . ,M}.
This partitions the overall Markov chain into negative num-
bered states, which represent the “idle” decision of the
smartphone users (or no participation), and positive numbered
states, which represent the “participation” decision of
smartphone users with corresponding output of the type of
contextual information to be contributedciq. As shown in
Fig. 5, ciq is illustrated as therecommendedaction, or the
result of moving to statesiq ∈ S.

For each queryq ∈ Q, we preset the number of iterationsJ ,
or transitions among energy-consumption states for each user
i, required to reach the overall system convergence. These
transitions are driven by the pay-off function and work in a
greedy fashion. Without loss of generality, letriq(j) andpiq(j),
wherej = {1, 2, . . . , J}, denote the reward and penalty useri

received from iteration stepj−1 to j before the new decision
for step j is made, respectively. After each iteration, the
current state of the smartphone would transit probabilistically
according to the received pay-off function to the next state,
i.e., siq(j) = siq(j − 1) + 1 or siq(j) = siq(j − 1) − 1. Higher
values of performance pay-off function drive the finite state
automaton to move towards two edge states−M and M .
However ifsiq(j−1) happens to be the left-most or right-most
state−M or M , then the next energy-consumption statesiq(j)
is only allowed to be in its own state or the adjacent state. Ina
summary, it is interesting to see that the punishment behavior
will make the energy consumption state of the smartphones
shift the chain towards middle while a rewarding behavior
will shift it outward.

B. The Pay-off Structure

It is desired that the goal of our proposed energy man-
agement approach is to prolong the lifetime ofall smart-
phones by reducing the energy consumption rate, to provide
the satisfactory QoI experience to all queries, and to meet
the users’credit expectationsimultaneously. Meeting these
expectations would give higher probability for participated
smartphone users to contribute in the following queries, while
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failing to do so would probably make the participatory sensing
task itself difficult.

1) User Experience Index:From each user’s perspective,
the overall query satisfaction should consider both the QoI
satisfaction index and the credit satisfaction index. We have:

Iiq(j) , min
(

IQoI
q (j), Ii,ωq

)

, ∀q ∈ Q, i ∈ N , j, (11)

and we will refer toIiq(j) as the “user experience index”.
The higher value of this index means the better support
of the querier’s demand while meeting participants’ credit
expectation, which would be the most favorable win-win
situation for the query.

2) Reward Structure:Given the defined user experience
index for each iteration stepj, we next show how the reward
structure for the Gur Game automaton is structured. We have:

riq(j) = φr

(

Iiq(j)
)

, ∀q ∈ Q, i ∈ N , j, (12)

where letφr : R→ [0, 1] denote the mapping from the attained
user experience index to the reward probability. Fig. 6(a)
shows an example of the realization ofφr , where parameters
are chosen asλr = 5, 10, 15. Mathematically, we have:

riq(j) =

{

exp−λrI
i
q(j)

2

, if Iiq(j) ∈ [0, 1),
0, otherwise.

(13)

We can see from (13) that instead of favoring the highest
user experience withIiq(j) ≈ 1, ∀j, the proposed reward
structure aims to provide only the satisfactory levelIiq(j) = 0,
i.e., meeting the querier’s requirement while maintainingthe
energy for future services. Theoretically, the candidate users
in the Gur Game will collaboratively achieve the highest pay-
off probability (both the reward and the punishment) through
iterations. We introduce the penalty structure capturing the
energy consumption upon information contribution in the next
section.

3) Penalty Structure:Since the type of contextual informa-
tion the user contributes changes over time, we propose to
use the normalized energy consumptioneiq(j), which denotes
the amount of energy usage from iteration stepj − 1 to j

due to the last action (although not taken)ĉiq(j − 1). eiq(j) is
computed as the ratio between the energy usageγ(ĉiq(j − 1))
and the maximum energy consumption over all types of the
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Fig. 7. An illustrative example for the change of the energy-consumption
states of any useri.

information maxc∈C γ(c), where letγ(·) denote the energy
consumption mapping for informationc ∈ C. We have:

eiq(j) =
γ(ĉiq(j − 1))

maxc∈C γ(c)
, ∀q ∈ Q, i ∈ N , j. (14)

Usingeiq(j) as the input to the penalty probability mapping
φp : R→ [0, 1] for each iteration step yields:

piq(j) = φp

(

eiq(j)
)

, ∀q ∈ Q, i ∈ N , j, (15)

where larger energy usage due to information contribution
ĉiq(j − 1) would result in higher penalty, and lower energy
usage is otherwise favorable. Fig. 6(b) shows an example
of the realization ofφp, where parameters are chosen as
λp = 3, 5, 7. Mathematically, we have:

piq(j) =

{

tanh
(

λp ln e
i
q(j)

)

, if eiq(j) ≥ 0,
0, otherwise.

(16)

We can see from (17) that the proposed penalty structure
penalizes the higher energy usage while favoring the minimum
energy consumption for any query service. Together with (13),
the reward and penalty structures trade off in providing the
satisfactory QoI experience to the query while spending the
minimum amount of energy in the service. We next introduce
how these structures are used in the distributed decision-
making process.

C. The Decision-Making Process

Given the pay-off structure in the previous section, next we
show the proposed iterative and distributed decision-making
process for each smartphone useri. Suppose the next decision
to make is at iterationj, see Fig. 7, and its residing state is the
same as the previous statesiq(j − 1). The outcome of thej th

decision would transit the state tosiq(j) and corresponds to a
recommended actionciq(j). After J iterations, the users would
make the final decision upon participation action toĉiq. The
pseudocode in Algorithm 1 illustrates the steps of iterations.

It is worth noting that the proposed Gur Game approach
is fully distributed. Users neither need to forecast their own
energy-consumption states nor exchange any information from
other participants. Instead, they use the trial-and-errormethod
to produce the best result at each step and iteratively achieve
the overall optimum [7], [8].

VIII. P ERFORMANCEEVALUATION

We access the proposed scheme under a simple but rep-
resentative participatory sensing scenario, where event of
interest is an outdoor performance and the pertinent contextual
information can be provided by text messages, pictures, or
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Algorithm 1 : Distributed Gur Game
1: ∀q ∈ Q, Initialize: J
2: for all j = 1, 2, 3, . . . J do
3: for all smartphone useri ∈ N , do
4: computeIiq(j) in (11);
5: computeeiq(j) in (14);
6: computeriq(j) andpiq(j) in (12) and (15);
7: uniformly generate a random numberseed∈ [0, 1];
8: state transition condition:

{

siq(j) = siq(j − 1) + 1, if seed ≥
riq(j)

riq(j)+pi
q(j)

,

siq(j) = siq(j − 1)− 1, otherwise,

where ifsiq(j−1) = ±M , thensiq(j) is only allowed
to be in its own state or the adjacent state.

9: output actionciq(j);
10: end for
11: end for
12: Return: final recommended actionciq ← ciq(J), ∀i ∈ N .

even videos from smartphone users. For simplicity reasons,
we do not simulate this information in detail, but we as-
sume that the querier would have different capabilities in
consuming this information, yielding a differentdegreeof
understanding the event. Therefore, we use thedegree of
understanding, “u”, denoted asur

q, ∀q ∈ Q, as the
only requiredQoI metric, randomly generated from the lower
bound 0.8 to the upper bound 1, where the higherur

q represents
higher the required level of contextual information, e.g. the
video. To this end, we are able to reduce the contextual
information setC to the size of 1. Query-wise, we assume
that the duration of the proposed iterative energy management
process is relatively small compared with the inter-arrival time
of the queries, so that there is only one query serving in the
network at any time. We set up our simulator by randomly
deployingN = 30 smartphone users in a200 × 200 meter
square, each of which has an initial, equal energy reserveE ,
so thatNE is the overall energy reserve for the entire network.
Lastly, we set the parameter of the expected credit from each
smartphone user to a constantϕi,r

q = 1, ∀i ∈ N , ∀q ∈ Q.
Finally, we employ a location-based detection model [23]
using physical properties of the smartphones, where individual
attained probability of detectionui,a

q from smartphone-to-
query distancediq is achieved by:

ui,a
q = exp

{

−
0.5

γ(ciq)

(

diq
)1.2

}

, ∀q ∈ Q, i ∈ N . (17)

By settingui,a
q = 1, each user computes its power consump-

tion in achieving best probability of detection, and Fig. 8
shows an example of the power usage.

After the iterations of the Gur Game, letNq ∈ N denote
the final set of users chosen to participate the queryq ∈ Q,
each of which achieves best detection probability 1. Next, we
adopt a simple heuristic to tie the participants responses to the

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

Distance from the smartphone to the site of interests (meters)

M
in

im
u
m

 p
o
w

e
r 

u
s
a
g
e

z
r
=0.8

z
r
=0.85

z
r
=0.9

z
r
=0.951

0.95

0.85

0.9

Fig. 8. An example of minimum power usage to achieve different probability
of detection requirements, w.r.t. different distances from the smartphone to the
site of interest.

querier’s query. We will write:

ua
q = tanh (0.8 ln |Nq|) , ∀q ∈ Q, (18)

implying that the more smartphones participate and send
pertinent contextual information, the more accurately andcom-
prehensively the querier’s query will be answered, e.g., when
Nq = 1 the attained degree of understanding is only 0, while
it saturates with level 1 when|Nq| = N . An example could
be the query of an ongoing event, where images taken from
different angles enforce the degree of user’s understanding.
Finally, the QoI satisfaction index is computed as in (3).

We first show the convergence of the proposed distributed
Gur Game approach by showing the change of the received
QoI satisfaction index over time in Fig. 9(a), where totally
20 queries are simulated and memory size ofM = 3 of
the Gur Game for each smartphone is used. A detailed look
at one query is demonstrated in Fig. 9(b). We observe that
for the fixed M , the received QoI satisfaction index itera-
tively converges to the lower-bound borderline satisfaction,
or: IQoI

q = 0, ∀q ∈ Q within small number of steps (in this
example 32 steps). AchievingIQoI

q = 0 requires the minimum
number of sensors involved into participation while preserving
much energy for the following queries; however although the
proposed scheme could not guarantee this “optimum”, we
still achieve the suboptimum (in terms of QoI) with very
fast convergence. If considering the possible combinations of
the Markov states forN sensorsMN , we conclude that the
number of required steps in our approach is quite efficient.

Next, we explore the impacts of both the memory size and
the network size on the convergence rate, in Fig. 10. It is
observed that for the fixed network size, the larger the memory
size of the Gur Game is, the more the required number of steps.
Meanwhile, for the fixed memory size, the convergence rate
increases with the increase of the number of users in a fixed
geographic region. To cope with this scalability issue, we may
reduce the set of participants toN = 30 in total (however the
number of people around the site of event occurrence where
the network operator may potentially communicate with could
be more), since users far apart would consume much more
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energy in participating the query. In the following simulations,
we fix M = 3 andN = 30.

We compare our algorithm with the optimal sensing sce-
nario, and the worst-case sensing scenario. For the former,it
achieves the lower-bound energy usage and QoI satisfactions,
by selecting the nearest and minimum number of neighbors
with regards to the site of interest to help with participatory
sensing according to their locations. And thus it is guaranteed
that the users chosen would use the minimum power consump-
tion. For the latter, all users are forced to participate in any
query so that best QoI is achieved with the compromise of the
larger energy usage.

Fig. 11(a) shows the histogram of the attained QoI satis-
faction index by simulating 800 tasks. It can be seen that
more than 93% of the tasks receive the satisfactory QoI
experience, or the proposed approach successfully guarantees
very low percentage of QoI failures, or the QoI outage
probability. Compared with the optimal solution where the
received QoI satisfaction index should be highly concentrated
to 0 (borderline), our proposal achieves the suboptimum. To
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Fig. 11. (a) The histogram of the received QoI satisfaction index when
p = q = 1, and (b) the impact of the human intervention on the QoI outage
probability w.r.t. differentp, q.

further balance the human intervention and provide lower QoI
outage, we introduce a marginǫ on the required degree of
understanding, orur

q,margin = (1 + ǫ)ur
q, ∀q ∈ Q, before the

distributed Gur Game starts, so that the larger number of
smartphones are recommended for participation with the com-
promise of potentially higher energy consumption per query.
Fig. 11(b) demonstrates this impact by fine tuning the tran-
sition matrix parametersp = q in (8) between disagreement
and agreement. It is interesting to observe that forp = q = 1,
i.e., without any margin reserved for QoI requirement, our
scheme achieves very low QoI outage probability, however it
increases sharply to the higher levels if human intervention is
consideredp = q < 1. This is primarily because the proposed
scheme helps choose the minimum amount of smartphone
users for participation to achieve the suboptimal degree of
understanding; however, if (at least) one of the chosen users
decides to give up, the attained QoI after the information
fusion would significantly deteriorate and drop below the
required level. This explains why we need to introduce this
margin to balance the human intervention.

Fig. 12 shows the simulation result for the change of the
credit allocation and expectation over time, where we preset
the threshold for dynamic pricing marginδ = 0.05. It is
observed that the proposed approach successfully tracks the
expected per-smartphone credit expectationϕi,r

q = 1, ∀i ∈ N ,
however the detailed change is still observable between the
band(1 ± δ), while the total allocated credit is close enough
to the total required for all smartphone users, i.e., we meetthe
credit expectations of the users.

Finally, Fig. 13 illustrates the change of the percentage of
the remaining energy for three scenarios, where we observe
that the proposed energy-management scheme successfully
achieve the suboptimal solution with significant gains if com-
pared with the full participation case, i.e., when the worst-case
full participation solution drain out the energy preserve of the
WSN, the proposed scheme has still 82% of the overall energy
left for the future tasks. Even compared with the optimal
sensing, the gap is relatively very small, i.e. only 4% higher
than our scheme. The suboptimum is achieved primarily due
to distributed selection of the set of sensors into participation
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which may not be the optimal set of sensors who are nearest
to the event; and thus the power consumption per-task could
be sometimes higher.

IX. CONCLUDING REMARKS

In this paper, we proposed a novel efficient network man-
agement framework for the emerging user-centric application,
the participatory sensing. We tackled the overall network
management problem as two subproblems, for the network
operator and for the individual smartphone user. For the
former, we explicitly consider the revenue maximization and
QoI support through a constrained optimization problem. We
also studied the impact of human behavior on the participatory
sensing decision-making process. For the latter, we user the
mathematical framework of the Gur Game to propose a
distributed QoI-aware energy-management scheme for smart-
phones. The fundamental trade-off between the maintenanceof
the smartphone energy and the support of the QoI experience
is fully exploited and addressed. Finally, extensive numerical
results on a complete participatory sensing scenario show the
proposed framework can successfully guarantee less than 7%
QoI outage, saves 80% of the energy reserve if compared with
the lower bound solution, and achieves the suboptimum with
only 4% gap if compared with optimal solution.

In the future work, we are planning of building a testing pro-
totype using Android phones as mobile clients and empirically
evaluate the human factors and the other system performance.
We are also working on a complete distributed solution for
participatory sensing of pure mobile-to-mobile systems. This

will be important and useful for opportunistic network or
delay tolerant network scenarios. We believe our work is a
fundamental stone for incentive-based participatory sensing,
and a lot of work can follow.
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