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ABSTRACT

Smartphones have exploded in popularity in recent years,
becoming ever more sophisticated and capable. As a result,
developers worldwide are building increasingly complex appli-
cations that require ever increasing amounts of computational
power and energy. In this paper we propose ThinkAir, a
framework that makes it simple for developers to migrate
their smartphone applications to the cloud. ThinkAir exploits
the concept of smartphone virtualization in the cloud and
provides method-level computation offloading. Advancing on
previous work, it focuses on the elasticity and scalability of the
cloud and enhances the power of mobile cloud computing by
parallelizing method execution using multiple virtual machine
(VM) images. We implement ThinkAir and evaluate it with a
range of benchmarks starting from simple micro-benchmarks
to more complex applications. First, we show that the exe-
cution time and energy consumption decrease two orders of
magnitude for a N -queens puzzle application and one order of
magnitude for a face detection and a virus scan application. We
then show that a parallelizable application can invoke multiple
VMs to execute in the cloud in a seamless and on-demand
manner such as to achieve greater reduction on execution
time and energy consumption. We finally use a memory-
hungry image combiner tool to demonstrate that applications
can dynamically request VMs with more computational power
in order to meet their computational requirements.

I. INTRODUCTION

Smartphones are becoming increasingly popular, with ap-
proximately 550,000 new Android devices being activated
worldwide every day 1. These devices have a wide range of
capabilities, typically including GPS, WiFi, cameras, gigabytes
of storage, and gigahertz-speed processors. As a result, devel-
opers are building ever more complex smartphone applications
such as gaming, navigation, video editing, augmented reality,
and speech recognition, which require considerable compu-
tational power and energy. Unfortunately, as applications be-
come more complex, mobile users have to continually upgrade
their hardware to keep pace with increasing performance
requirements but still experience short battery lifetime.

Considerable research work have proposed solutions to ad-
dress the issues of computational power and battery lifetime by
offloading computing tasks to cloud. Prominent among those

1Google’s 2011 Q2 earnings call

are the MAUI [1] and the CloneCloud [2] projects. MAUI
provides method level code offloading based on the .NET
framework. However, MAUI work does not address the scaling
of execution in cloud. CloneCloud tries to extrapolate the
binary pieces of a given process whose execution on the cloud
would make the overall process execution faster. It determines
these pieces with an offline static analysis of different running
conditions of the process binary on both a target smartphone
and the cloud. The output of such analysis is then used to
build a database of pre-computed partitions of the binary;
this is used to determine which parts should be migrated
on the cloud. However, this approach only considers limited
input/environmental conditions in the offline pre-processing
and needs to be bootstrapped for every new application built.

In this paper, we propose ThinkAir, a new mobile cloud
computing framework which takes the best of the two worlds.
ThinkAir addresses MAUI’s lack of scalability by creating
virtual machines (VMs) of a complete smartphone system on
the cloud, and removes the restrictions on applications/input-
s/environmental conditions that CloneCloud induces by adopt-
ing an online method-level offloading. Moreover, ThinkAir (1)
provides an efficient way to perform on-demand resource al-
location, and (2) exploits parallelism by dynamically creating,
resuming, and destroying VMs in the cloud when needed. To
the best of our knowledge, ThinkAir is the first to address
these two aspects in mobile clouds. Supporting on-demand
resource allocation is critical as mobile users request different
computational power based on their workloads and deadlines
for tasks, and hence the cloud provider has to dynamically
adjust and allocate its resources to satisfy customer expec-
tations. Existing work does not provide any mechanism to
support on-demand resource allocation, which is an absolute
necessity given the variety of applications that can be run
on smartphones, in addition to the high variance of CPU
and memory resources these applications could demand. The
problem of exploiting parallelism becomes important because
mobile applications require increasing amounts of processing
power, and parallelization reduces the execution time and
energy consumption of these applications with significant
margins when compared to non-parallel executions of the
same.

ThinkAir achieves all the above mentioned goals by pro-
viding a novel execution offloading infrastructure and rich
resource consumption profilers to make efficient and effec-
tive code migration possible; it further provides library and
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compiler support to make it easy for developers to exploit the
framework with minimal modification of existing code, and
a VM manager and parallel processing module in cloud to
manage smartphone VMs as well as automatically split and
distribute tasks to multiple VMs.

We now continue by positioning ThinkAir with respect
to related work (§II) before outlining the ThinkAir architec-
ture (§III). We then describe the three main components of
ThinkAir in more detail: the execution environment (§IV),
the application server (§V), and the profilers (§VI). We then
evaluate the performance of benchmark applications with
ThinkAir (§VII), discuss design limits and future plans (§VIII),
and conclude the paper (§IX).

II. RELATED WORK

The basic idea of dynamically switching between (con-
strained) local and (plentiful) remote resources, often referred
as cyber-foraging, has shed light on many research work [3],
[4], [5], [6], [7], [8], [9]. These approaches augment the capa-
bility of resource-constrained devices by offloading computing
tasks to nearby computing resources, or surrogates. ThinkAir
takes insights and inspirations from these previous systems,
and shifts the focus from alleviating memory constraints and
provides evaluation on hardware of the time, typically lap-
tops, to more modern smartphones. Furthermore, it enhances
computation performance by exploiting parallelism with mul-
tiple VM creation on elastic cloud resources and provides
a convenient VM management framework for different QoS
expectation [10].

Several approaches have been proposed to predict resource
consumption of a computing task or method. Narayanan et
al. [11] use historical application logging data to predict
the fidelity of an application, which decides its resource
consumption although they only consider selected aspects of
device hardware and application inputs. Gurun et al. [12]
extend the Network Weather Service (NWS) toolkit in grid
computing to predict offloading but give less consideration to
local device and application profiles.

MAUI [1] describes a system that enables energy-aware
offloading of mobile code to infrastructure. Its main aim
is to optimize energy consumption of a mobile device, by
estimating and trading off the energy consumed by local
processing vs. transmission of code and data for remote exe-
cution. Although it has been found that optimizing for energy
consumption often also leads to performance improvement, the
decision process in MAUI only considers relatively coarse-
grained information, compared with the complex character-
istics of mobile environment. MAUI is similar to ThinkAir
in that it provides method-level, semi-automatic offloading of
code. However, ThinkAir focuses more on scalability issues
and parallel execution of offloaded tasks.

More recently, CloneCloud [2] proposes cloud-augmented
execution using a cloned VM image as a powerful virtual
device. Cloudlets [13], [14] proposes the use of nearby
resource-rich computers, to which a smartphone connects over
a wireless LAN, with the argument against the use of the cloud

due to higher latency and lower bandwidth available when
connecting. In essence, Cloudlets makes the use of smartphone
simply as a thin-client to access local resources, rather than
using the smartphone’s capabilities directly and offloading
only when required. Paranoid Android [15] uses QEMU to run
replica Android images in the cloud to enable multiple exploit
and attack detection techniques to run simultaneously with
minimal impact on phone performance and battery life. Virtual
Smartphone [16] uses Android x86 port to execute Android
images in the cloud efficiently on VMWare ESXi virtualization
platform, although it does not provide any programmer support
for utilizing this facility. ThinkAir shares the same design
approach as these of using smartphone VM image inside the
cloud for handling computation offloading. Different from
them, ThinkAir targets a commercial cloud scenario with
multiple mobile users instead of computation offloading of
a single user. Hence, we focus not only on the offloading
efficiency and convenience for developers, but also on the
elasticity and scalability of the cloud side for the dynamic
demands of variant customers.

III. DESIGN GOALS AND ARCHITECTURE

The design of ThinkAir is based on some assumptions
which we believe are already, or soon will become, true:
(1) Mobile broadband connectivity and speeds continue to
increase, enabling access to cloud resources with relatively low
Round Trip Times (RTTs) and high bandwidths; (2) As mobile
device capabilities increase, so do the demands placed upon
them by developers, making the cloud an attractive means
to provide the necessary resources; and (3) Cloud computing
continues to develop, supplying resources to users at low cost
and on-demand. We reflect these assumptions in ThinkAir
through four key design objectives.

(i) Dynamic adaptation to changing environment. As one of
the main characteristics of mobile computing environment is
rapid change, ThinkAir framework should adapt quickly and
efficiently as conditions change to achieve high performance
as well as to avoid interfering with the correct execution of
original software when connectivity is lost.

(ii) Ease of use for developers. By providing a simple inter-
face for developers, ThinkAir eliminates the risk of misusing
the framework and accidentally hurting performance instead
of improving it, and allows less skilled and novice developers
to use it and increase competition, which is one of the main
driving forces in today’s mobile application market.

(iii) Performance improvement through cloud computing.
As the main focus of ThinkAir, we aim to improve both
computational performance and power efficiency of mobile
devices by bridging smartphones to the cloud. If this bridge
becomes ubiquitous, it serves as a stepping stone towards more
sophisticated software.

(iv) Dynamic scaling of computational power. To satisfy the
customer’s performance requirements for commercial grade
service, ThinkAir explores the possibility of dynamically
scaling the computational power at the server side as well
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Fig. 1. Overview of the ThinkAir framework.

as parallelizing execution where possible for optimal perfor-
mance.

The ThinkAir framework consists of three major com-
ponents: the execution environment (§IV), the application
server (§V) and the profilers (§VI). We will now give details
of each component of the framework, depicted in Figure 1.

IV. COMPILATION AND EXECUTION

In this section we describe in detail the process by which a
developer writes code to make use of ThinkAir, covering the
programmer API and the compiler, followed by the execution
flow.

A. Programmer API

Since the execution environment is accessed indirectly by
the developer, ThinkAir provides a simple library that, coupled
with the compiler support, makes the programmer’s job very
straightforward: any method to be considered for offloading is
annotated with @Remote.

This simple step provides enough information to enable the
ThinkAir code generator to be executed against the modified
code. This takes the source file and generates necessary
remoteable method wrappers and utility functions, making
it ready for use with the framework - method invocation is
done via the ExecutionController, which detects if a given
method is a candidate for offloading and handles all the
associated profiling, decision making and communication with
the application server without the developer needing to be
aware of the details.

B. Compiler

A key part of the ThinkAir framework, the compiler comes
in two parts: the Remoteable Code Generator and the Cus-
tomized Native Development Kit (NDK). The Remoteable

Code Generator is a tool that translates the annotated code
as described above. Most current mobile platforms provide
support for execution of native code for the performance-
critical parts of applications, but cloud execution tends to be
on x86 hosts, while most smartphone devices are ARM-based,
therefore the Customized NDK exists to provide native code
support on the cloud.

C. Execution Controller

The Execution Controller drives the execution of remoteable
methods. It decides whether to offload execution of a particular
method, or to allow it to continue locally on the phone.
The decision depends on data collected about the current
environment as well as that learnt from past executions.

When a method is encountered for the first time, it is
unknown to the Execution Controller and so the decision
is based only on environmental parameters such as network
quality: for example, if the connection is of type WiFi, and
the quality of connectivity is good, the controller is likely
to offload the method. At the same time, the profilers start
collecting data. On a low quality connection, however, the
method is likely to be executed locally.

If and when the method is encountered subsequently, the
decision on where to execute it is based on the method’s past
invocations, i.e., previous execution time and energy consumed
in different scenarios, as well as the current environmental
parameters. Additionally, the user can also set a policy ac-
cording to their needs. We currently define four such policies,
combining execution time, energy conservation and cost:

• Execution time. Historical execution times are used in
conjunction with environmental parameters to prioritise
fast execution when offloading, i.e. offloading only if
execution time will improve (reduce) no matter the impact
on energy consumption.

• Energy. Past data on consumed energy is used in conjunc-
tion with environmental parameters to prioritize energy
conservation when offloading, i.e., offloading only if
energy consumption is expected to improve (reduce) no
matter the expected impact on performance.

• Execution time and energy. Combining the previous two
choices, the framework tries to optimize for both fast
execution and energy conservation, i.e., offloading only
if both the execution time and energy consumption are
expected to improve.

• Execution time, energy and cost. Using commercial cloud
services also implies cost - you pay for as much as you
use, therefore offloading decision based on execution time
and energy could also be adjusted according to how much
a user is prepared to pay for the retained CPU time and
battery power.

Clearly more sophisticated policies could be expressed;
discovering policies that work well, meeting user desires and
expectations is the subject of future work.
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D. Execution flow

On the phone, the Execution Controller first starts the
profilers to provide data for future invocations. It then decides
whether this invocation of the method should be offloaded or
not. If not, then the execution continues normally on the phone.
If it is, Java reflection is used to do so and the calling object
is sent to the application server in the cloud; the phone then
waits for results, and any modified local state, to be returned. If
the connection fails for any reason during remote execution,
the framework falls back to local execution, discarding any
data collected by the profiler. At the same time, the Execution
Controller initiates asynchronous reconnection to the server.
If an exception is thrown during the remote execution of the
method, it is passed back in the results and re-thrown on the
phone, so as not to change the original flow of control.

In the cloud, the Application Server manages clients that
wish to connect to the cloud, which is illustrated in the next
section.

V. APPLICATION SERVER

The ThinkAir Application Server manages the cloud side
of offloaded code and is deliberately kept lightweight so that
it can be easily replicated. It is started automatically when
the remote Android OS is booted, and consists of three main
parts, described below: a client handler, cloud infrastructure,
and an automatic parallelization component.

A. Client Handler

The Client Handler executes the ThinkAir communication
protocol, managing connections from clients, receiving and
executing offloaded code, and returning results.

To manage client connections, the Client Handler registers
when a new application, i.e., a new instance of the ThinkAir
Execution Controller, connects. If the client application is
unknown to the application server, the Client Handler retrieves
the application from the client, and loads any required class
definitions and native libraries. It also responds to application-
level ping messages sent by the Execution Controller to
measure connection latency.

Following the initial connection set up, the server waits to
receive execution requests from the client. A request consists
of necessary data: containing object, requested method, pa-
rameter types, parameters themselves, and a possible request
for extra computational power. If there is no request for more
computational power, the Client Handler proceeds much as
the client would: the remoteable method is called using Java
reflection and the result, or exception if thrown, is sent back.
There are some special cases regarding exception handling
in ThinkAir, however. For example, if the exception is an
OutOfMemoryError, the Client Handler does not send it to
the client directly; instead, it dynamically resumes a more
powerful clone (a VM), delegates the task to it, waits for
the result and sends it back to the client. Similarly, if the
client explicitly asks for more computational power, the Client
Handler resumes a more powerful clone and delegates the
task to it. In the case that the client asks for more clones to

TABLE I
DIFFERENT CONFIGURATIONS OF VMS.

Resource basic main large ×2
large

×4
large

×8
large

CPUs 1 1 1 2 4 8
Memory (MB) 200 512 1024 1024 1024 1024
Heap size (MB) 32 100 100 100 100 100

execute its task in parallel, the Client Handler resumes needed
clones, distributes the task among them, collects and sends
results back to the client. Along with the return value, the
Client Handler also sends profiling data for future offloading
decisions made by the Execution Controller at the client side.

B. Cloud Infrastructure

To make the cloud infrastructure easily maintainable and to
keep the execution environment homogeneous, e.g., w.r.t. the
Android-specific Java bytecode format, we use a virtualiza-
tion environment allowing the system to be deployed where
needed, whether on a private or commercial cloud. There are
many suitable virtualization platforms available, e.g., Xen [17],
QEMU [18], and Oracle’s VirtualBox. In our evaluation we
run the Android x86 port 2 on VirtualBox 3. To reduce its
memory and storage demand, we build a customized version
of Android x86, leaving out unnecessary components such as
the user interface and built-in standard applications.

Our system has 6 types of VMs with different configurations
of CPU and memory to choose from, which are shown
in Table I. The VM manager can automatically scale the
computational power of the VMs and allocate more than one
VMs for a task depending on user requirements. The default
setting for computation is only one VM with 1 CPU, 512MB
memory, and 100MB heap size, which clones the data and
applications of the phone and we call it the primary server.
The primary server is always online, waiting for the phone
to connect to it. The second type of VMs can be of any
configuration shown in Table I, which in general does not
clone the data and applications of a specific phone and can be
allocated to any user on demand - we call them the secondary
servers. The secondary servers can be in any of these three
states: powered-off, paused, or running. When a VM is in
powered-off state, it is not allocated any resources. The VM
in paused state is allocated the configured amount of memory,
but does not consume any CPU cycles. In the running state
the VM is allocated the configured amount of memory and
also makes use of CPU.

The Client Handler, which is in charge of the connection
between the client (phone) and the cloud, runs in the main
server. The Client Handler is also in charge of the dynamic
control of the number of running secondary servers. For ex-
ample, if too many secondary VMs are running, it can decide
to power-off or pause some of them that are not executing

2http://android-x86.org/
3http://www.virtualbox.org/



5

any task. Utilizing different states of the VMs has the benefit
of controlling the allocated resources dynamically, but it also
has the drawback of introducing latency by resuming, starting,
and synchronizing among the VMs. From our experiments,
we observe that the average time to resume one VM from the
paused state is around 300ms. When the number of VMs to
be resumed simultaneously is high (seven in our case), the
resume time for some of the VMs can be up to 6 or 7 seconds
because of the instant overhead introduced in the cloud. We
are working on finding the best approach for removing this
simultaneity and staying in the limit of 1s for total resume
time. When a VM is in powered-off state, it takes on average
32s to start it, which is very high to use for methods that run
in the order of seconds. Therefore, we keep a few VMs in
the paused state for rapid scaling and can further clone new
VMs if demand keeps increasing. Furthermore, there are tasks
that take hours to execute on the phone (e.g., virus scanning),
for which it is still reasonable to spend 32s for starting
the new VMs. A user may have different QoS requirements
(e.g. completion time) for different tasks at different times,
therefore the VM manager needs to dynamically allocate the
number of VMs to achieve the user expectations.

To make tests consistent, in our environment all the VMs
run on the same physical server which is a large multicore
system with ample memory to avoid effects of CPU or memory
congestion.

C. Automatic Parallelization

Parallel execution can be exploited much more efficiently
on the cloud than on a smartphone, either using multiprocessor
support or splitting the work among multiple VMs. Our
approach for parallelization considers intervals of input values.
It is particularly useful in two main types of computationally
expensive algorithms:

• Recursive algorithms or ones that can be solved using
Divide-and-Conquer method. They are often based on
constructing a solution when iterating over a range of
values of a particular variable, allowing sub-solution
computation to be parallelized (e.g. the classic example
of 8-queens puzzle, which we present in VII-B).

• Algorithms using a lot of data. For example, a face recog-
nition application requires comparison of a particular face
with a large database of pre-analyzed faces, which can be
done on a distributed database on the cloud much more
easily than just on a phone. Again, this allows to split
computations based on the intervals of data to be analyzed
on each clone.

We provide results of such parallelization in the evaluation
section (§VII).

VI. PROFILING

Profilers are a critical part of the ThinkAir framework:
the more accurate and lightweight they are, the more correct
offloading decisions can be made, and the lower overhead
is introduced. The profiler subsystem is highly modular so
that it is straightforward to add new profilers. The current

implementation of ThinkAir includes three profilers (hardware,
software, and network), which collect variant data and feed
into the energy estimation model.

For efficiency we use Android intents to keep track of
important environmental parameters which do not depend on
program execution. Specifically, we register listeners with the
system to track battery levels, data connectivity presence, and
connection types (WiFi, cellular, etc.) and subtypes (GPRS,
UMTS, etc.). This ensures that the framework does not spend
extra time and energy polling the state of these factors.

A. Hardware Profiler

The Hardware Profiler feeds hardware state information into
the energy estimation model, which is considered when an
offloading decision is made. In particular, CPU and screen
have to be monitored 4. We also monitor the WiFi and 3G
interfaces. The following states are monitored by the Hardware
Profiler in current ThinkAir framework.

• CPU. The CPU can be idle or have a utilization from
1–100% as well as different frequencies;

• Screen. The LCD screen has a brightness level between
0–255;

• WiFi. The power state of WiFi interface is either low or
high;

• 3G. The 3G radio can be either idle, or in use with a
shared or dedicated channel.

B. Software Profiler

The Software Profiler tracks a large number of parameters
concerning program execution. After starting executing a re-
moteable method, whether locally or remotely, the Software
Profiler uses the standard Android Debug API to record the
following information.

• Overall execution time of the method;
• Thread CPU time of the method, to discount the affect

of pre-emption by another process;
• Number of instructions executed 5;
• Number of method calls;
• Thread memory allocation size;
• Garbage Collector invocation count, both for the current

thread and globally.

C. Network Profiler

This is probably the most complex profiler as it takes into
account many different sets of parameters, by combining both
intent and instrumentation-based profiling. The former allows
us to track the network state so that we can e.g., easily
initiate re-estimation of some of the parameters such as RTT
on network status change. The latter involves measuring the
network RTT as well as the amount of data that ThinkAir
sends/receives in a time interval, which are used to estimate

4We consider that simply turning off the screen during offloading would
be too intrusive to users.

5This requires an adaptation of the distributed kernel due to what we believe
is a bug in the OS using cascading profilers leading to inconsistent results
and program crashes.
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the perceived network bandwidth. This includes the overheads
of serialization during transmission, allowing more accurate
offloading decisions to be taken.

In addition, the Network Profiler tracks several other pa-
rameters for the WiFi and 3G interfaces, including the num-
ber of packets transmitted and received per second, uplink
channel rate and uplink data rate for the WiFi interface, and
receiving and transmitting data rate for the 3G interface. These
measurements enable better estimation of the current network
performance being achieved.

D. Energy Estimation Model

A key parameter for offloading policies in ThinkAir is
the effect on energy consumption. This requires dynamically
estimating the energy consumed by methods during execution.
We take inspiration from the recent PowerTutor [19] model
which accounts for power consumption of CPU, LCD screen,
GPS, WiFi, 3G, and audio interfaces on HTC Dream and
HTC Magic phones. PowerTutor indicates that the variation of
estimated power on different types of phones is very high, and
presents a detailed model for the HTC Dream phone which is
used in our experiments. We modify the original PowerTutor
model to accommodate the fact that certain components such
as GPS and audio have to operate locally and cannot be
migrated to the cloud. By measuring the power consumption of
the phone under different cross products of the extreme power
states, PowerTutor model further indicates that the maximum
error is 6.27% if the individual components are measured
independently. This suggests that the sum of independent
component-specific power estimates is sufficient to estimate
overall system power consumption.

Using this approach we devise a method with only mi-
nor deviations from the results obtained by PowerTutor. We
implement this energy estimation model inside the ThinkAir
Energy Profiler and use it to dynamically estimate the energy
consumption of each running method.

VII. EVALUATION

We evaluate ThinkAir using two sets of experiments. The
first is adapted from the Great Computer Language Shootout 6,
which was originally used to perform a simple comparison of
Java vs. C++ performance, and therefore serves as a simple
set of benchmarks comparing local vs. remote execution. The
second set of experiments uses four applications for a more
realistic evaluation: an instance of the N -queens problem, a
face detection program, a virus scanning application, and an
image merging application.

To evaluate, we define the boundary input value (BIV)
as the minimum value of the input parameter for which
offloading would give a benefit. We use the execution time
policy throughout, so for example when running Fibonacci(n)
under the execution time profile, we find a BIV of 18 when
the phone connects to the cloud through WiFi, i.e., the
execution of Fibonacci(n) is faster when offloaded for n ≥ 18

6http://kano.net/javabench/

TABLE II
BOUNDARY INPUT VALUES OF BENCHMARK APPLICATIONS, WITH WIFI

AND 3G CONNECTIVITY, AND THE COMPLEXITY OF ALGORITHMS.

Benchmark BIV Complexity Data (bytes)
WiFi 3G Tx Rx

Fibonacci 18 19 O(2n) 392 307
Hash 550 600 O(n2log(n)) 383 293
Methcall 2500 3100 O(n) 338 297
Nestedloop 7 8 O(n6) 349 305

(cf. Table II). We run the experiments under four different
connectivity scenarios as follows.

• Phone. Everything is executed on the phone;
• WiFi-Local. The phone directly connects to a WiFi router

attached to the cloud server via WiFi link;
• WiFi-Internet. The phone connects to the cloud server

using a normal WiFi access point via the Internet;
• 3G. The phone is connected to the cloud using 3G data

network.
Every result is obtained by running the program 20 times

for each scenario and averaging; there is a pause of 30 seconds
between two consecutive executions. The typical RTT of the
3G network that we use for the experiments is around 100ms
and that for the WiFi-Local is around 5ms. In order to test
the performance of ThinkAir with different quality of WiFi
connection, we use both a very good dedicated residential
WiFi connection (RTT 50ms) and a commercial WiFi hotspot
shared by multiple users (RTT 200ms), which the device may
encounter on the move, for the WiFi-Internet setting. We do
not find any significant difference for these two cases, and
hence we simplify them to a single case except for the full
application evaluations.

A. Micro-benchmarks

Originally used for a simple Java vs. C++ comparison, each
of these benchmarks depends only on a single input parameter,
allowing for easier analysis. Our results are shown in Table II.
We find that, especially for operations where little data needs
to be transmitted, network latency clearly affects the boundary
value, hence the difference between boundary values in the
case of WiFi and 3G network connectivity. This effect is
also noted by Cloudlets [13]. We also include computational
complexity of the core parts of the different benchmarks to
show that, with growing input values, ThinkAir becomes more
efficient. Note that there are large constant factors hidden
by the O notation, hence the different BIVs with the same
complexity.

B. Application benchmarks

We consider four complete benchmark applications repre-
senting more complex and compute intensive applications: a
solver for the classic N -Queens problem, a face detection
application, a Virus scanning application, and an application
combining two pictures into an unique large one.
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Fig. 2. Execution time and energy consumption of the N -queens puzzle,
N = {4, 5, 6, 7, 8}.

1) N -Queens Puzzle: In this application, we implement the
algorithm to find all solutions for the N-Queens Puzzle and
return the number of solutions found. We consider 4 ≤ N ≤ 8
since at N = 8 the problem becomes very computationally
expensive as there are 4,426,165,368 (i.e., 64 choose 8)
possible arrangements of eight queens on a 8 × 8 board, but
only 92 solutions. We apply a simple heuristic approach to
constrain each queen to a single column or row. Although
this is still considered as a brute force approach, it reduces
the number of possibilities to just 88 = 16, 777, 216. Figure 2
shows that for N = 8, the execution on the phone is unrealistic
as it takes hours to finish. However, we consider the problem
a suitable benchmark because many real problems get solved
in a brute-force fashion.

Figure 2 shows the time taken and the energy consumed.
We notice that the BIV is between 5: for higher N , both
the time taken and energy consumed in the cloud are less
than that on the phone. In general, WiFi-Local is the most
efficient offload method as N increases, probably because
the higher bandwidths lead to lower total network costs.
Ultimately though, computation costs come to dominate in
all cases.
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Figure 3 breaks
down the energy
consumption between
components for N = 8.
As expected, when
executing locally on
the phone, the energy
is consumed by the
CPU and the screen:
the screen is set to
100% brightness and
the CPU runs at
the highest possible
frequency. When offloading, some energy is consumed by the
use of the radio, with a slightly higher amount for 3G than
WiFi. The difference in CPU energy consumed between WiFi
and WiFi-Local is due to the different bandwidth and latency
of the links and subsequently different amount of time spent
waiting for results and in transmission.

2) Face Detection: We port a third party program 7 towards
a simple face detection program that counts the number of

7http://www.anddev.org/quick and easy facedetector demo-t3856.html
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Fig. 4. Execution time and energy consumed for the face detection
experiments.

faces in a picture and computes simple metrics for each
detected face (e.g., distance between eyes). This demonstrates
that it is straightforward to apply the ThinkAir framework to
existing code. The actual detection of faces uses the Android
API FaceDetector, so this is an Android optimized pro-
gram and should be fast even on the phone.We consider one
run with just a single photo, comparing it against multiple (10
and 100) others, which have previously been loaded into both
the cloud and the smartphone. It could, for example, be needed
for matching a photo against the user’s Facebook or Flickr
image database. Larger collections of photos would not be
stored on a phone and benefits from in-cloud processing would
be even larger: no phone energy consumed downloading the
pictures and better quality connection means faster execution.
When running over multiple photos, we use the return values
of the detected faces to determine if the initial single photo is
duplicated within the set. In all cases, the execution time and
energy consumed are much lower than that in the cloud.
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Fig. 5. Energy consumed by each compo-
nent for face detection with 100 pictures in
different scenarios.

Figure 4 shows the
results for the face
detection experiments.
The single photo case
actually runs faster on
the phone than offload-
ing if the connectiv-
ity is not the best: it
is a native API call
on the phone and quite
efficient. However, as
the number of pho-
tos being processed in-
creases, and in any case when the connectivity has sufficiently
high bandwidth and low latency, the cloud proves more effi-
ciency. Figure 5 shows the breakdown of the energy consumed
among components. Similar to the 8-Queens experiment re-
sults shown in Figure 3, the increased power of the cloud
server makes the offloaded cases dramatically more efficient
than that when everything is run locally on the phone.

3) Virus Scanning: We implement a virus detection al-
gorithm for Android, which takes a database of 1000 virus
signatures and the path to scan, and returns the number of
viruses found. In our experiments, the total size of files in the
directory is 10MB, and the number of files is around 3,500.
Figure 6 shows that the execution on the phone takes more than
one hour to finish, while less than three minutes if offloaded.
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Fig. 6. Execution time and energy consumption of the virus scanning in
different scenarios.

As the the data sent for offloading is larger compared to
previous ones, the comparison of the energy consumed by the
WiFi and 3G is more fair. As a result we observe that WiFi is
less energy efficient per bit transmitted than 3G, which is also
supported by the face detection experiment (Figure 5). Another
interesting observation is related to the energy consumed by
the CPU. In fact, from the results of all the experiments we
observe that the energy consumed by the CPU is lower when
offloading using 3G instead of WiFi.

4) Images Combiner: The intention of this application is to
address the problem that some applications cannot be run on
the phone due to lack of resources other than CPU, such as,
the Java VM heap size is a big constraint for Android phones.
If one application exceeds 16MB 8 of the allocated heap, it
throws an OutOfMemoryError exception 9. Working with
bitmaps in Android can be a problem if programmers do
not pay attention to memory usage. In fact, our application
is a naı̈ve implementation of combining two images into a
bigger one. The application takes two images of size (w1, h1),
(w2, h2) as input, allocates memory for another image of size
(max{w1, w2},max{h1, h2}), and copies the content of each
original image into the final one. The problem here arises
when the application tries to allocate memory for the final
image, resulting in OutOfMemoryError and making the
execution aborted. We are able to circumvent this problem by
offloading the images to the cloud clone and explicitly asking
for high VM heap size. If OutOfMemoryError occurs when
executing a remoteable method, it is offloaded to a clone and
when the clone does not have enough free VM heap size
the execution fails with OutOfMemoryError again. It then
resumes a more powerful clone and delegates the job to it. In
the meantime, the application running on the phone frees the
memory occupied by the original images, and waits for the
final results from the cloud.

C. Parallelization with Multiple VM Clones

In previous subsection we have showed that the ThinkAir
framework can scale the processing power up by resuming
more powerful clones and delegating task to them. Another
way of achieving the scaling of the processing power of a

8http://developer.android.com/reference/android/app/ActivityManager.
html#getMemoryClass

9The maximum heap size can be configured from the phone producers, so
it can be different from 16MB, which is the default on the Android API
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puzzle using N = {1, 2, 4, 8} servers.
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Fig. 8. Time taken and energy consumed for face detection on 100 pictures
using N = {1, 2, 4, 8} servers.
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Fig. 9. Time taken and energy consumed for virus scanning using N =
{1, 2, 4, 8} servers.

client is to exploit parallel execution. We have previously
described how we expect to split parallelizable applications to
tasks by using intervals of input parameters. In this section, we
discuss the performance of three representative applications, 8-
Queens, Face Detection with 100 pictures, and Virus Scanner,
using multiple cloud VM clones.

Our experiment is setup as follow. A single primary server
communicates with the client and k secondary clones, where
k ∈ {1, 3, 7}. When the client connects to the cloud, it com-
municates with the primary server which in turn manages the
secondaries, informing them that a new client has connected.
All interactions between the client and the primary are as
usual, but now the primary behaves as a (transparent) proxy
for the secondaries, incurring some synchronization overheads.
The secondary services are brought up as requested by clients.

The modular architecture of the ThinkAir framework allows
programmers to implement many parallel algorithms with no
modification to the ThinkAir code. In our experiments, as the
tasks are highly parallelizable, we evenly divide them among
the secondaries.

In the 8-Queens puzzle case, the problem is split by
allocating different regions of the board to different clones
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and combining the results. For the face detection problem, the
100 photos are simply distributed among the secondaries for
duplicates detection. In the same way, the files to be scanned
for virus signatures are distributed among the clones and each
clone runs the virus scanning algorithm on the files allocated.
In all experiments, the secondary clones are resumed from the
paused state, and the resume time is included in the overhead
time, which in turn is included in the execution time.

Figure 7, 8, and 9 show the performance of the applications
as the number of clones increases. In all 3 applications, the
4-clone case obtains the most performance benefits, since
synchronization overheads start to outweigh the running costs
as the regions which the board has been divided to become
very small. We can also see that the increased input size makes
the WiFi less efficient in terms of energy compared to 3G,
which again supports our previous observations.

VIII. DISCUSSION

ThinkAir currently employs a conservative approach for
data transmissions, which is obviously suboptimal as not all
instance object fields are accessed in every method and so
do not generally need to be sent. We are currently working
on improving the efficiency of data transfer for remote code
execution, combining static code analysis with data caching.
The former eliminates the need to send and receive data that is
not accessed by the cloud. The latter ensures that unchanged
values need not be sent, in either direction, repeatedly. This
could be further combined with speculative execution to ex-
plore alternative execution paths for improved caching. Note
that these optimization would need to be carefully applied
however, as storing the data between calls and checking for
changes has large overheads on its own.

ThinkAir assumes a trustworthy cloud server execution
environment: when a method is offloaded to the cloud, the
code and state data are not maliciously modified or stolen. We
also currently assume that the remote server faithfully loads
and executes any code received from clients although we are
currently working on integrating a lightweight authentication
mechanism into the application registration process. For ex-
ample, a device agent can provide UI for the mobile user to
register the ThinkAir service before she can use the service,
generating a shared secret based on user account or device
identity.

Privacy-sensitive applications may need more security re-
quirements than authentication. For example, if a method
executed in cloud needs private data from the device, e.g., loca-
tion information or user profile data, its confidentiality needs
to be protected during transmission. We plan to extend our
compiler to support SecureRemoteable class to support
these security properties automatically and release the burden
from application developers.

IX. CONCLUSIONS

We present ThinkAir, a framework for offloading mobile
computation to the cloud. Using ThinkAir requires only simple
modifications to an application’s source code coupled with

use of our ThinkAir tool-chain. Experiments and evaluations
with micro benchmarks and computation intensive applications
demonstrate the benefits of ThinkAir for profiling and code
offloading, as well as accommodating changing computational
requirements with the ability of on-demand VM resource
scaling and exploiting parallelism. We are continuing the
development of several key components of ThinkAir: we have
ported Android to Xen allowing it to be run on commercial
cloud infrastructure, and we continue to work on improving
programmer support for parallelizable applications. Further-
more, we see improving application parallelization support as
a key direction to use the capabilities of distributed computing
of the cloud.
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