Spatial Sampling Artifacts of Wave Field Synthesis for the Reproduction of Virtual Point Sources

Sascha Spors and Jens Ahrens

Deutsche Telekom Laboratories
Quality and Usability Laboratory
Technische Universität Berlin

126th AES Convention
Munich 2009

Introduction

Motivation

- Wave field synthesis (WFS) suffers from spatial aliasing in practical implementations
- Spatial aliasing artifacts for plane waves are well understood
- Virtual point sources are frequently used in WFS
- Here: Detailed analysis of spatial aliasing artifacts for virtual point sources
Wave Field Synthesis for Linear Arrays

Rayleigh’s first integral formula provides the pressure in one half space V given the directional pressure gradient on the boundary ∂V of that half space:

$$P(x, \omega) = -2 \int_{-\infty}^{\infty} \frac{\partial}{\partial n} P(x_0, \omega) G_{0,2D}(x - x_0, \omega) \, dx_0$$

The field of a (primary) source $S(x, \omega)$ within the area V is uniquely given by its pressure gradient on the boundary ∂V:

$$P(x, \omega) = -2 \int_{-\infty}^{\infty} \frac{\partial}{\partial n} S(x_0, \omega) G_{0,2D}(x - x_0, \omega) \, dx_0$$
Wave Field Synthesis for Linear Arrays

The Green’s function can be interpreted as (secondary) source that generates the field of a desired virtual source \(S(x, \omega) \) inside the listening area \(V \).

\[
P(x, \omega) = \int_{-\infty}^{\infty} D(x_0, \omega) G_{0,2D}(x - x_0, \omega) \, dx_0
\]

\[
D(x_0, \omega) = -2 \frac{\partial}{\partial n} S(x_0, \omega)
\]

Virtual source \(S(x, \omega) \)

\[
p = [x \, y]^T \quad x_0 = [x_0 \, 0]^T
\]

Secondary Source Types

The explicit form of the Green’s function depends on the dimensionality

- two-dimensional reproduction → secondary line sources
- three-dimensional reproduction → secondary point sources

WFS uses secondary point sources for two-dimensional reproduction

- mismatch of secondary source type
- results in amplitude and spectral errors
- artifacts have no influence on sampling theorems (...but on near-field effects)

⇒ analysis of sampling artifacts based on theory of two-dimensional WFS
Spatio-temporal Frequency Domain Description

Reproduced wave field using a linear distribution of secondary sources

\[P(\mathbf{x}, \omega) = \int_{-\infty}^{\infty} D(x_0, \omega) G_0(\mathbf{x} - \mathbf{x}_0, \omega) \, dx_0 \]

Spatial Fourier transformation \(\mathcal{F}_x \)

\[\tilde{P}(k_x, y, \omega) = \tilde{D}(k_x, \omega) \cdot \tilde{G}_0(k_x, y, \omega) \]

- spatio-temporal frequency domain description of reproduced wave field
- provides insights into structure of spatial aliasing
- allows to identify the spatial aliasing components

Example: Spectrum of Driving Function / Secondary Sources

- propagating for \(|k_x| \leq \frac{\omega}{c} \), evanescent for \(|k_x| > \frac{\omega}{c} \), \(\omega = 2\pi f \)
Sampling of Secondary Source Distribution

Spatial sampling of continuous secondary source distribution

\[P(x, \omega) \]

\[x_0 \]

\[\Delta x \]

virtual source

\[S(x, \omega) \]

\[\Delta x: \text{spatial sampling interval} \]

Sampling of virtual point sources

\[\tilde{G}_0(k_x, y, \omega) \]

Spatially discrete distribution of secondary sources

- sampling leads to repetitions of spectrum of driving function
- weighted by secondary source spectrum (analog to interpolation)
Spectrum of Reproduced Wave Field

Qualitative illustration of spectra (magnitude) of driving function and secondary sources

- exact reproduction of desired wave field without sampling
- spectra not strictly bandlimited in k_x for given frequency ω
- spectral repetitions due to spatial sampling
- mixtures of propagating/evanescent contributions
Theory of Secondary Source Sampling

Artifacts due to the secondary source sampling can only be avoided when

- the spectrum of the driving function is band-limited, and
- the spectrum of the secondary sources is band-limited.

Consequences of missing band-limitation

- spectral overlaps in the driving function → aliasing
- repetitions weighted by secondary source spectrum → reconstruction error

Anti-aliasing condition (considering the propagating parts only)

\[f_{\text{al}} \leq \frac{c}{2 \Delta x} \]

Example: \(\Delta x = 0.20 \text{ m} \Rightarrow f_{\text{al}} \approx 850 \text{ Hz} \)

Example: Sampling Artifacts

\[[x_s = [0 \ -1] \text{ m}, f_s = 2000 \text{ Hz}, \Delta x = 0.20 \text{ m}] \]
Contributions to Reproduced Wave Field

Four contributions to the reproduced spectrum can be identified

<table>
<thead>
<tr>
<th>Driving Function</th>
<th>Propagating</th>
<th>Evanescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Source</td>
<td>Propagating</td>
<td>Propagating 1</td>
</tr>
<tr>
<td>Source</td>
<td>Evanescent</td>
<td>Propagating 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evanescent 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evanescent 2</td>
</tr>
</tbody>
</table>

- evanescent contributions decay rapidly with distance to secondary sources
- evanescent contributions and propagating 2 occur due to spatial sampling
- perceptual relevance of evanescent contributions unclear
- propagating 1 is main contribution

Example: Contributions to Reproduced Wave Field

\[[x_s = [0 \ -1] \text{ m}, f_s = 2000 \text{ Hz}, \Delta x = 0.20 \text{ m}] \]
Example: Contributions to Reproduced Wave Field

\[x_s = [0 \quad -1] \text{ m}, \quad f_s = 2000 \text{ Hz}, \quad \Delta x = 0.20 \text{ m} \]

Truncation of Secondary Source Distribution

- model truncation by spatial windowing of driving function
- convolution with transformed window function in spatial frequency domain
- truncation artifacts (bending waves)

geometric approximation

driving function \(x_{s2} \)
Spectrum of Reproduced Wave Field for Truncated Array

Qualitative illustration of spectra (magnitude) of driving function and secondary sources

- aliasing frequency $f_{\text{tr},a1} \geq f_{a1}$ higher compared to infinitely long array

- increased aliasing frequency $f_{\text{tr},a2} \geq f_{\text{tr},a1}$ for distant listener positions
- not infinite as for the plane wave case e.g. [Spors et al., 120th AES]
Example: Truncated Secondary Source Distribution

\[x \rightarrow [m] \]
\[y \rightarrow [m] \]
\[x_s = [0 \ - \ 1] m, f_s = 1000 \text{ Hz}, \Delta x = 0.20 \text{ m}, N = 16 \]

Aliasing frequencies

\[f_{al} \approx 850 \text{ Hz} \]
\[f_{tr,al1} \approx 935 \text{ Hz} \]
\[f_{tr,al2} \approx 1030 \text{ Hz} \]

Summary and Conclusions

Main findings

- spatial frequency domain analysis provides interesting insights
- sampling artifacts are listener position dependent in practice
- anti-aliasing conditions for infinite/truncated arrays
- evanescent contributions are side effect of sampling
- application to focused sources [Spors et al., DAGA 2009]

Further work

- artifacts for broadband signals
- extension to 2.5D reproduction (evanescent contributions!)
- perception of evanescent contributions
Thanks for your attention!