Physical and Perceptual Properties of Focused Sources in Wave Field Synthesis

Sascha Spors, Hagen Wierstorf, Matthias Geier, and Jens Ahrens

Deutsche Telekom Laboratories
Quality and Usability Lab
Technische Universität Berlin

127th Convention of the AES
New York 2009

Motivation

- focused sources are virtual sources that are located within the listening area
- stunning effect of wave field reconstruction techniques (with limitations)
- first analysis of their properties for WFS [Spors et. al, NAG/DAGA 2009]
- here extension towards 2.5-dimensional reproduction and perceptual properties
Wave Field Synthesis for Linear Arrays

Application of Huygens-Fresnel principle to sound reproduction in a half-space V

- continuous linear distribution ∂V of monopole sources (secondary sources)
- strength (driving function) of secondary sources is given by Rayleigh integral
- in practice spatial discrete distribution of loudspeakers as secondary sources
- secondary point sources for 2D reproduction \Rightarrow 2.5D WFS
Wave Field Synthesis for Linear Arrays

Application of Huygens-Fresnel principle to sound reproduction in a half-space V

- continuous linear distribution ∂V of monopole sources (secondary sources)
- strength (driving function) of secondary sources is given by Rayleigh integral
- in practice spatial discrete distribution of loudspeakers as secondary sources
- secondary point sources for 2D reproduction \Rightarrow 2.5D WFS
Properties of WFS for Non-Focused Sources

Two/three-dimensional WFS
- exact reproduction for continuous distribution of secondary sources
- spatial sampling of secondary source distribution
 - may lead to artifacts
- truncation of secondary source distribution
 - limited listening area, may lead to artifacts

Additional errors of 2.5-dimensional WFS
- secondary source dimensionality mismatch (point vs. line source)
 - amplitude errors, spectral errors (can be corrected by \sqrt{jk}-equalization)
- out of reproduction plane listeners
 - amplitude errors, localization errors

Time-Reversal Acoustic Focusing
- based on reciprocity of wave equation
- aims at accumulation of energy in time and space
- direction of wave propagation not explicitly taken into account
- size of focus point for free-field propagation $\approx \lambda/4$

$t = -0.58 \text{ ms}$

$t = 1.5 \text{ ms}$
Acoustic Focusing in WFS

- typical realization in WFS by modeling acoustic sink at focus point
- results in converging wave field towards focus point, diverging after
- source must be located between listeners and loudspeakers for correct auralization
- sensible selection of active secondary sources (listener dependent)

$$t = -0.58 \text{ ms}$$

$$t = 1.5 \text{ ms}$$

Geometry used for Simulations and Experiments

- 2.5-dimensional reproduction with WFS
- loudspeaker distance $\Delta x = 0.15 \text{ m}$, array length $L = 10$ resp. $L = 30 \text{ m}$
- focused source position $x_s = (0 \ 1) \text{ m}$, listener positions indicated by ●
- aliasing frequency (wrt driving function) $f_{al} \approx 1140 \text{ Hz}$
Reproduction of Monochromatic Focused Source

\(f_s = 1 \text{ kHz} \)

\[
[x_s = (0\ 1) \text{ m}, \Delta x = 0.15 \text{ m}]
\]

\[
[x_s = (0\ 1) \text{ m}, \Delta x = 0.15 \text{ m}]
\]
Reproduction of Monochromatic Focused Source
\(f_s = 5 \text{ kHz} \)

\(\mathbf{x}_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m} \)

Reproduction of Monochromatic Focused Source
\(f_s = 10 \text{ kHz} \)

\(\mathbf{x}_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m} \)
Evanescent vs. Propagating Contributions

\(f_s = 2 \text{ kHz} \)

\[x_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m} \]

Amplitude Distribution of Reproduced Wave Field
Parallel to x-axis for \(y = 3 \text{ m} \)

\[x_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m} \]
Amplitude Distribution of Reproduced Wave Field
Along y-axis for \(x = 0 \) m

\[y \rightarrow [m] \]
\[\text{Amplitude} \]

\[\text{focused source} \]
\[\text{real source} \]

\[[x_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m}] \]

WFS Pre-equalization for Focused Sources

- 2.5D reproduction with WFS requires \(\sqrt{\frac{k}{\pi}} \) pre-equalization
- pre-equalization is only necessary up to the aliasing frequency
- problem: aliasing frequency varies strongly with listener/source position

\[[x_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m}, L = 30 \text{ m}, \text{w/o pre-equalization}] \]
Reproduction of a Bandlimited Focused Source

\(b_s = 1 \text{ kHz} \)

\[[x_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m}, L = 30 \text{ m}] \]

\(b_s = 20 \text{ kHz} \)

\[[x_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m}, L = 30 \text{ m}] \]
Impulse Response at Listener Position

Listener position $x = (0 \ 3) \ m$

$[x_s = (0 \ 1) \ m, \Delta x = 0.15 \ m, \ L = 30 \ m]$

Impulse Response at Listener Position

Listener position $x = (2 \ 4) \ m$

$[x_s = (0 \ 1) \ m, \Delta x = 0.15 \ m, \ L = 30 \ m]$
Impulse Response at Listener Position

Listener position $x = (5\ 4)\ m$

\[x_s = (0\ 1)\ m, \Delta x = 0.15\ m, L = 30\ m\]

Impulse Response at Listener Position

Listener position $x = (10\ 4)\ m$

\[x_s = (0\ 1)\ m, \Delta x = 0.15\ m, L = 30\ m\]

Impulse Response at Listener Position

Listener position $x = (15 \ 4) \text{ m}$

![Graph showing impulse response at listener position](image)

$x = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m}, L = 30 \text{ m}$

Spatio-Temporal Properties of Pre-Echos

Total length of array $L = 10 \text{ m}$

- **earliest pre-echo**
 - ![Graph showing earliest pre-echo](image)

- **direction/strength of pre-echos**
 - ![Graph showing direction/strength of pre-echos](image)

$x = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m}$
Spatio-Temporal Properties of Pre-Echos

Total length of array $L = 30$ m

- **Perceptual Relevance of Pre-Echos**
 - pre-echos arrive from different directions than focused source
 - wave fronts from pre-echos have lower levels than focused source

Precedence effect: The direction of a perceived sound is not altered by echos,
- arriving from different directions,
- occurring in a time window of 1-40 ms after the leading wave front and
- not exceeding more than 10-15 dB level difference.

Potential consequences for perception of focused sources
- direction of first wave front may determine perceived source direction
- perception of more than one source or a distributed source
- additional sources are filtered versions of focused source
- artifacts will be more obvious for transient signals

\[x_s = (0 \ 1) \text{ m}, \Delta x = 0.15 \text{ m} \]
Results from Informal Listening Experiment

Design of informal listening test

- dynamic (head-tracked) binaural resynthesis of a linear WFS system
- source material: female speech, cello, castanets
- 5 listener positions for long array, 3 for short array
- 5 expert listeners freely described differences between stimuli and reference

Subjective experiments confirm the theoretical findings

- almost no artifacts close to / in front of focused source
- distortions are audible as comb filter effects, smearing of transients, chirping and whistling sounds
- artifacts often have different direction of incidence than focused source
- many subjects reported more than one source or one wide source

Summary and Conclusions

Main findings

- no sampling artifacts at focus point, distortions are increasing with distance
- pre-echos from different directions than focused source
- lead to perceptually (severe) distortions
- coloration of source signal due to extremely changing aliasing frequency for moving focused sources/listeners

Further work

- formal listening experiment
- thresholds for audibility of pre-echo artifacts
- methods to reduce perceptual impact of artifacts