Reproduction of Focused Sources by the Spectral Division Method

Sascha Spors and Jens Ahrens

Deutsche Telekom Laboratories
Quality and Usability Lab
Technische Universität Berlin

4th International Symposium on Communications, Control and Signal Processing
Limassol 2010

Motivation

- focused sources convey the impression of a virtual source within the listening area
- stunning effect of wave field reconstruction techniques (with limitations)
- state of the art in Wave Field Synthesis (WFS) and Higher-Order Ambisonics (HOA)
- extension of the spectral division method (SDM) towards focused sources

Example: Acoustic Focusing in WFS
Acoustic Focusing Techniques

Time-reversal Acoustic Focusing
- based on reciprocity of wave equation
- aims at accumulation of energy in time and space
- direction of wave propagation not explicitly taken into account

Focusing Approach in WFS / HOA
- converging wave field towards focus point, diverging after
- source must be located between listeners and loudspeakers for correct auralization
- sensible selection of active secondary sources (listener dependent)
SDM – Basic Concept

Pressure field produced by a linear distribution of weighted secondary sources

\[
P(x, \omega) = \int_{-\infty}^{\infty} D(x_0, \omega) G_0(x - x_0, \omega) \, dx_0
\]

- desired \(P(x, \omega) = S_{fs}(x, \omega) \) within listening area
- solution of integral equation is known to be unique
- derivation of driving signal by spectral division and inverse Fourier transformation
Secondary Source Model

Acoustic point sources are a practical model for secondary sources

\[G(x - x_0, \omega) = \frac{1}{4\pi} \frac{e^{-j\frac{\omega}{c}|x-x_0|}}{|x-x_0|} \]

Spatial Fourier transformation \(\mathcal{F}_x \)

\[\tilde{G}(k_x, y, \omega) = \begin{cases} \frac{i}{4}H_0^{(2)}\left(\sqrt{\left(\frac{\omega}{c}\right)^2 - k_x^2} y\right), & \left|\frac{\omega}{c}\right| > |k_x| \\ \frac{1}{2\pi}K_0\left(\sqrt{k_x^2 - \left(\frac{\omega}{c}\right)^2} y\right), & \left|\frac{\omega}{c}\right| < |k_x| \end{cases} \]

- Fourier transformation valid for \(y > 0 \)
- traveling wave for \(\left|\frac{\omega}{c}\right| > |k_x| \), evanescent for \(\left|\frac{\omega}{c}\right| < |k_x| \)

Model of Focused Source

Field of acoustic point source placed within the listening area (for \(y > y_{fs} > 0 \))

\[S_{fs}(x, \omega) = \hat{S}_{fs}(\omega) \frac{1}{4\pi} \frac{e^{-j\frac{\omega}{c}|x-x_{fs}|}}{|x-x_{fs}|} \]

Spatial Fourier transformation \(\mathcal{F}_x \)

\[\hat{S}_{fs}(k_x, y, \omega) = \hat{S}_{fs}(\omega) e^{j k_x x_{fs}} \begin{cases} \frac{i}{4}H_0^{(2)}\left(\sqrt{\left(\frac{\omega}{c}\right)^2 - k_x^2} (y - y_{fs})\right), & \left|\frac{\omega}{c}\right| > |k_x| \\ \frac{1}{2\pi}K_0\left(\sqrt{k_x^2 - \left(\frac{\omega}{c}\right)^2} (y - y_{fs})\right), & \left|\frac{\omega}{c}\right| < |k_x| \end{cases} \]

- no explicit model for \(y < y_{fs} \)
- model for \(y > y_{fs} \) suitable due to uniqueness of solution
- alternative: model of point sink for \(y < y_{fs} \)
Driving Signal for Focused Sources

The driving signal is yielded by spectral division

\[
\tilde{D}_{ls}(k_x, \omega) = \tilde{S}_{ls}(\omega) e^{i k_x x_{fs}} \begin{cases}
\frac{H_0^{(2)}(\sqrt{\left(\frac{\omega}{c}\right)^2 - k_x^2 (y_{fs} - y_f)} - k_x y_f)}{H_0^{(2)}(\sqrt{\left(\frac{\omega}{c}\right)^2 - k_x^2 y_f})} & , \left| \frac{\omega}{c} \right| > |k_x| \\
\frac{K_0(\sqrt{k_x^2 - \left(\frac{\omega}{c}\right)^2 (y_{fs} - y_f)})}{K_0(\sqrt{k_x^2 - \left(\frac{\omega}{c}\right)^2 y_f})} & , \left| \frac{\omega}{c} \right| < |k_x|
\end{cases}
\]

- driving signal depends on listener distance \(y \) to secondary source distribution
- inverse Fourier transformation of driving signal not available

2.5-dimensional Reproduction

- evaluate driving signal for a reference distance \(y = y_{ref} \) (reference line)
- correct reproduction only on reference line
- amplitude and (slight) spectral deviations besides reference line

Example – Synthesized Wave Field of a Focused Source

Monochromatic Driving Signal with Evanescent Contributions

\((x_{fs} = [0 1 0]^T \text{ m}, f_{fs} = 1 \text{ kHz}, y_{ref} = 2 \text{ m}) \)
Modified Driving Signal

- strong evanescent contributions before focus point $y < y_{fs}$
- consequence of desired evanescent contributions behind focus point $y > y_{fs}$
- idea: discard evanescent contributions in model of focused source

$$\tilde{D}_{mod,fs}(k_x, \omega) = \tilde{S}_{fs}(\omega) e^{jk_x x_{fs}} \begin{cases}
H_0^{(2)}(\sqrt{(\frac{\omega}{c})^2 - k_x^2} (y_{ref} - y_{fs})) & |\frac{\omega}{c}| > |k_x| \\
H_0^{(2)}(\sqrt{(\frac{\omega}{c})^2 - k_x^2} y_{ref}) & |\frac{\omega}{c}| < |k_x|
\end{cases}$$

Example – Synthesized Wave Field of a Focused Source

Monochromatic Modified Driving Signal without Evanescent Contributions

$$(x_{fs} = [0 \ 1 \ 0]^T \text{ m}, f_{fs} = 1 \text{ kHz}, y_{ref} = 2 \text{ m})$$
Sampling of Secondary Source Distribution

Continuous distribution of secondary sources

$$D(x_0, \omega) \quad \tilde{G}_0(k_x, y, \omega) \quad P(x, \omega)$$

Sampling leads to repetition of spectrum of driving function → overlaps → aliasing
- weighted by secondary source spectrum → reconstruction error

Spatially discrete distribution of secondary sources

$$D(x_0, \omega) \quad D_S(x_0, \omega) \quad n \Delta x \quad \tilde{G}_0(k, \omega) \quad P_S(x, \omega)$$

Spatial sampling

Sampling leads to repetition of spectrum of driving function → overlaps → aliasing
- weighted by secondary source spectrum → reconstruction error
Example – Synthesized Wave Field of a Focused Source
Spatially Discrete Secondary Source Distribution

\[(x_{fs} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T \text{m}, f_{fs} = 1 \text{kHz}, y_{ref} = 2 \text{ m}, \Delta x = 0.20 \text{ m})\]

Summary and Conclusions

Main findings
- SDM provides exact solution to acoustic focusing problem
- not feasible to reproduce evanescent contributions of focused source
- WFS can be interpreted as an approximation of the SDM
 - focused sources show interesting aliasing properties
 - amplitude deviations due to 2.5-dimensional reproduction

Further work
- efficient implementation of driving function
- research on audibility of evanescent contributions
- listening experiment to compare SDM with established methods