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ABSTRACT

The standard separable two-dimensional (2-D) wavelet transform
(WT) has recently achieved a great success in image processing be-
cause it provides a sparse representation of smooth images. How-
ever, it fails to capture efficiently one-dimensional (1-D) discontinu-
ities, like edges and contours, that are anisotropic and characterized
by geometrical regularity along different directions. In our previ-
ous work, we proposed a construction ofcritically sampled perfect
reconstruction anisotropictransform withdirectional vanishing mo-
ments(DVM) imposed in the corresponding basis functions, called
directionlets. Here, we show that the computational complexity of
our transform is comparable to the complexity of the standard2-D
WT and substantially lower than the complexity of other similar ap-
proaches. We also present a zerotree-based image compression algo-
rithm using directionlets that strongly outperforms the correspond-
ing method based on the standard wavelets at low bit rates.

Index Terms— Image coding, Image orientation analysis, Im-
age segmentation, Wavelet transforms

1. INTRODUCTION

Providing efficient transform-based representations of images is an
important problem in many areas of image processing, like approx-
imation and compression. An efficient representation requiresspar-
sity, that is, most of information has to be contained in a few large-
magnitude coefficients.

The standard2-D WT has become very successful because it
provides a sparse multiresolution representation of smooth images
owing to vanishing moments in the high-pass filters (or zeros at
ω = 0) [1]. It also has a low computational complexity and sim-
ple filter design because of the separable filtering and subsampling
operations.

However, the performance of the2-D WT is limited by thespa-
tial isotropy and two-directional constructionof the corresponding
basis functions, that is, the filtering and subsampling operations are
applied symmetrically across scales only along the horizontal and
vertical directions. For that reason, the standard2-D WT fails to pro-
vide a sparse representation of1-D discontinuities (edges and con-
tours) in images. These features are characterized by a geometrical
coherence that is not properly captured by the isotropic wavelet ba-
sis functions. Thus, to provide an efficient representation of edges
and contours, the basis functions are required to beanisotropicand
to have DVM along more than the two standard directions. Several
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previous approaches, like curvelets [2], contourlets [3], bandelets
[4, 5] and wedgeprints [6], have already addressed this difficult task.
However, these methods havehigher complexitythan the standard
2-D WT and requirenon-separablefiltering and filter design. Fur-
thermore, these transforms are oftenoversampled, thus, making it
non-trivial to have efficient image compression methods.

In our previous work [7, 8, 9], we designed critically sampled
anisotropic basis functions with DVM inany two directions with
rational slopes, which we calleddirectionlets. Our basis construction
retains the separable processing and the computational simplicity of
the standard2-D WT. We showed that directionlets outperformed
the standard2-D WT in non-linear approximation (NLA) of images
without a substantial increase of complexity. In [9], we also analyzed
the approximation power of directionlets when applied to smooth
synthetic images with one discontinuity curve.

In this paper, we analyze computational complexity of our trans-
form and compare it to the complexity of other similar transforms.
We also focus on image compression at low bit rates using direction-
lets and we present the results of compression ofnatural images. We
propose a compression method based on multiscale wavelet struc-
tures, calledzerotrees(originally introduced in [10]). Here, we adapt
the zerotrees to directionlets and we call the resulting construction
directional zerotrees. Furthermore, we show that the new image
coder significantly outperforms the coder explained in [10] at low
bit rates with the same order of computational complexity of the im-
plemented transform.

The outline of the paper is as follows. In Section 2, we review
the construction of directionlets and the asymptotic approximation
behavior for smooth synthetic images. In Section 3, we analyze the
computational complexity of our transform and compare it to the
complexity of several similar transforms. Then, we present the coder
based on directionlets and results on compression of natural images
in Section 4. Finally, we conclude in Section 5.

2. REVIEW OF DIRECTIONLETS

The construction of directionlets has been explained in detail in our
previous work [7, 8, 9]. Here, we only revisit the basic ideas.

As shown in [7], directionlets are constructed as basis functions
of the so-calledskewed anisotropic wavelet transforms(S-AWT).
These transforms provide anisotropy of the basis functions and im-
pose DVM alonganytwo directions with rational slopes1 [7]. At the

1Recall that anLth order DVM along the direction with a rational slope
r = b/a is equivalent to requiring thez-transform of a basis function to have
a factor(1− z−a

1 z−b
2 )L.
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Fig. 1. The S-AWT allows for an anisotropic iteration of the filtering and sub-
sampling operations applied along two different directions. (a) The decomposition in
frequency for two iterations. The basis functions obtained from the (b) Haar and (c)
biorthogonal ”9-7”1-D scaling and wavelet functions.

same time and very importantly, this method retains the1-D filtering
and subsampling operations, in addition to the simplicity of process-
ing and filter design of the standard2-D WT. Furthermore, the basis
functions arecritically sampledwhile ensuringperfect reconstruc-
tion.

Two examples of directionlets are shown in Fig. 1(b) and (c).
These basis functions are constructed using the frequency decompo-
sition illustrated in Fig. 1(a) and the Haar and biorthogonal ”9-7”
1-D filter-banks, respectively.

Directionlets have been shown [7, 8, 9] to improve substantially
the efficiency of representation of images that contain anisotropic
structures in different orientations. They outperform the theoretical
approximation power of the standard2-D WT, as reviewed next.

2.1. Non-linear Approximation of Images

The task of image approximation is to represent an image by a subset
of retained transform coefficients, while the rest of them is set to
zero. In NLA, the indexes of the retained coefficients are adapted to
the content of the signal.

The quality of the approximation is commonly measured in terms
of mean-square error(MSE), that is, for a signalx and its approxi-
mation usingN coefficientsx̂N , the MSE is given by‖x − x̂N‖2.
The asymptotic rate of decay of the MSE, asN tends to infinity,
is a fundamental approximation property of the transform and this
rate allows us to compare approximation performance of different
transforms.

Mallat [11] showed that, for theC2/C2 class of images,2 the
best decay of the MSE that can be achieved isO(N−2). The stan-
dard2-D WT, instead, can achieve only a rateO(N−1) and is, there-
fore, suboptimal. Methods, like bandelets [4, 5] and wedgeprints [6]
achieve optimal performance. Other methods, like curvelets [2] and
contourlets [3] that achieveO(N−2(log N)3) are nearly optimal.
However, as we show in Section 3, the complexity of all these al-
gorithms is substantially higher than the standard2-D WT and also
directionlets.

Recall that natural images have geometrical features that vary
over space. Thus, directionality is considered as a local character-
istic, defined in a small neighborhood. Since directionlets are con-
strained to have DVM along only two directions, this implies the
need for usingspatial segmentationas a way of partitioning an im-
age into smaller segments with one or a few dominant directions
per segment. In our method, we use the quadtree segmentation (the

2Images that consist of twoC2 smooth regions separated by aC2 smooth
contour.
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Fig. 2. An example of NLA of an image from the classC2/C2. (a) An image
from the classC2/C2 is approximated using the standard WT and the S-AWT with
spatial quadtree segmentation. (b) The MSE expressed in terms of PSNR is significantly
reduced in the case when the S-AWT is applied.

whole image or each segment is divided into four equal segments),
as the simplest segmentation method. Then, in each spatial segment,
the corresponding directionlets are constructed using different direc-
tions adapted to the content of each segment.

It has been shown in [7, 8, 9] that, by using spatial segmen-
tation, directionlets can achieve a rate of decay of MSE equal to
O(N−1.55), outperforming the standard2-D WT. Fig. 2 shows an
example of aC2/C2 image and gives a comparison of performance
in NLA using directionlets and the2-D WT. Notice that the shown
graph compares the NLA performance only at lower rates because
most of important coefficients are captured by a small portion of di-
rectionlets.

We emphasize that, although the rate of decay of the MSE achie-
ved in our method is slower than the theoretically optimal rate, di-
rectionlets retain (a) low computational complexity and (b) critical
sampling.

In the next section, we analyze the computational complexity of
the applied S-AWT and compare it to the computational complexity
of the other transforms that provide better approximation behaviors
(contourlets, bandelets and wedgeprints). In Section 4, we show
how the property of critical sampling allows for an efficient image
compression method using directionlets based on Lagrangian opti-
mization.

3. COMPUTATIONAL COMPLEXITY OF
DIRECTIONLETS

Here, we calculate the order of the number of multiplications and
additions required to implement the S-AWT. Then, we compare the
result to the computational orders of the other methods.

As shown in Fig. 1(a) and in [7, 8], the S-AWT consists of it-
erated filtering and subsampling operations. Assuming that the sub-
sampling operations do not carry any computational cost, each filter-
ing operation is performed inO(N ·L) multiplications andO(N ·L)
additions, whereN is the number of input samples andL is the
length of the applied filter. In the following theorem, we provide the
precise order of computational complexity of the S-AWT.

Theorem 1 Given anN × N image, the number of operations re-
quired by the S-AWT withn1 andn2 transform steps in the two trans-
form directions, respectively, is of the orderO(LN2), whereL is the
length of the filter used in the transform.



Table 1. Comparison of computational complexity of the4 trans-
forms for anN ×N image.

Directionlets O(LN2)

Contourlets O(L1 · L2N
2)

Wedgeprints O(N2 log2 N)

Bandelets O(N2(log2 N)2)

Proof: In one iteration block of the transform, there are
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multiplications and additions. Assume that the transform is iterated
J times. Then, the total number of operations is given by
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which results inO(LN2). ¥
Notice that the computational complexity given by (1) is sub-

stantially lower than the complexity of the other similar methods.
More precisely, bandelets requireO(N2(log2 N)2) operations [4].
Wedgeprints implementation requires to perform a search in a large
dictionary of linear edges and, thus, the complexity of processing
grows rapidly with the size of image, asO(N2 log2 N) [6]. Fur-
thermore, contourlets have complexity of the orderO(L1 · L2N

2),
where the implemented filters are purely2-D and have the sizeL1×
L2. Therefore, the number of multiplications and additions is much
higher (in the sense that the constant that is involved is higher) than
in the case of directionlets [3]. Table 1 summarizes the comparison
of computational complexity of these methods.

4. COMPRESSION OF IMAGES

Compression using orthogonal transform can be considered as an ex-
tension of NLA. It consists of approximation, indexing the retained
coefficients, quantization and entropy coding.

Our goal in this section is to show that directionlets can improve
substantially the performance of wavelet-based compression meth-
ods as compared to the standard2-D WT. For that reason, we use
the wavelet zerotree coder proposed in [10] in both cases. How-
ever, in our coder, we modify the multiscale zerotree structure of
wavelet coefficients in such a way that the new parent-children rela-
tion among coefficients depends on anisotropy and orientation of di-
rectionlets (basis functions), as explained in the sequel. Notice that,
although there exist newer and more efficient wavelet-based coders
(like SPIHT [12] or SFQ [13]), we restrict ourselves to zerotrees
for the sake of simplicity in the comparison. However, since simi-
lar zerotree-like relations among coefficients are exploited in these
methods, their efficiency can also be improved using directionlets.

Recall that the standard zerotree structure is defined in such a
way that each wavelet coefficient, except the ones at the finest scale,
has a certain number of children, that is, the coefficients at the next
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Fig. 3. The zerotrees of wavelet coefficients in the case of (a) the standard2-D WT
and (b) S-AWT along+45◦ and−45◦ (directional zerotrees).

finer scale that correspond to the same spatial location and orienta-
tion as the parent coefficient [10] (see Fig. 3(a)). The set of chil-
dren is isotropic and aligned along the horizontal and vertical direc-
tions, following the properties of the standard2-D WT. On the other
hand, in the case of our transform, since directionlets are anisotropic
and oriented in different directions, the corresponding children are
grouped in anisotropic and oriented sets, as shown in Fig. 3(b). We
call these structuresdirectional zerotrees. The anisotropy and ori-
entation of the sets of children is the same as that used in the con-
struction of directionlets. Notice that directional zerotrees still retain
the property of grouping coefficients across scales that belong to the
same spatial location.

The adaptation of the coder to the content of image is performed
in 3 optimization phases. In these phases, the optimal solution is
found over (a) spatial quadtree segmentation, (b) choice of directions
in each segment and (c) bit allocation for each chosen segment and
directions. Since directionlets are critically sampled, we can use the
Lagrangian optimization process easily in each optimization phase
(note that this is not the case in other overcomplete methods).

The whole coding algorithm consists of5 steps:3

(i) The image is segmented in a full quadtree until a predeter-
mined depth of spatial segmentation is reached.

(ii) In each segment, the S-AWT is performed for all possible
pairs of directions from a predetermined set.

(iii) In each segment and for each pair of directions, the zerotree
encoding algorithm is applied on the corresponding direction-
lets using directional zerotrees. The optimal encoding bit rate
is chosen so that the minimal Lagrangian cost is achieved
given a predetermined Lagrangian multiplicator.

(iv) In each segment, the optimal pair of directions is chosen so
that the corresponding Lagrangian cost is minimal.

(v) In each segment, if the sum of Lagrangian costs of the child-
ren-segments is larger than the Lagrangian cost of the current
segment, the children are pruned.

The improvement of the quality of compressed images, when
compared to the results of the standard zerotree coding algorithm, is
significant, especially at low bit rates. Fig. 4 shows the compression
results of the syntheticC2/C2 image shown in Fig. 2(a) in the case
of the standard and the directional method. The PSNRs of the re-
constructions are26.33dB and38.62dB, respectively, where the op-
erational bit rate is the same and equal to0.0263 bpp. In Fig. 4(a),

3Due to lack of space, we provide only a brief explanation of the coding
process. For more details, we refer to [8].
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Fig. 4. TheC2/C2 image shown in Fig. 2(a) is compressed using the zerotree-based
method with the standard2-D WT and the adaptation of the S-AWT to the content of
each spatial segment. The depth of the transform decomposition in both cases is equal.
(a) The optimal spatial segmentation and choice of directions. (b) The reconstruction
obtained using the standard2-D WT at the bit rate0.0263bpp has the PSNR equal to
26.33dB. (c) The reconstruction obtained using directionlets at the same bit rate has the
PSNR equal to38.62dB.

the optimal spatial segmentation and choice of directions are shown.
Fig. 5 presents a similar comparison between the performance of
the two methods when applied to the natural test image Lena. The
new method based on directionlets also outperforms the standard al-
gorithm at low bit rates. The two reconstructions are made at the bit
rate0.0395bpp and the PSNRs are23.51dB and26.07dB, respec-
tively.

Notice that the optimization phases introduce a new computa-
tional complexity in the whole compression algorithm. This ad-
ditional complexity is quadratic depending on the total number of
possible directions and linear depending on the maximally allowed
depth of spatial segmentation. However, in practice, we have ob-
served that only4 directions are enough to achieve a good perfor-
mance. At the same time, good results are obtained with3 levels of
spatial segmentation. Thus, in practice, the increase in complexity is
not substantial and affects only the constant. The order of the total
complexity remains the same and is equal toO(LN2).

Similarly, the optimization process requires some overhead bits
to encode the optimal solution. However, because of the small num-
ber of possibilities in practice, this additional bit rate is negligible
(107 out of 6895 bits in the case shown in Fig. 4 and118 out of
10355 bits for the example shown in Fig. 5) and does not affect the
overall performance of the coder.

Notice also that spatial quadtree segmentation generates a block-
ing effect. However, the effect is not significant and does not affect
the perceptual quality of the reconstructed image.

5. CONCLUSION

We analyzed the computational complexity of the anisotropic trans-
form with DVM along different directions proposed in our previ-
ous work. The transform has the same order of complexity as the
standard2-D WT and substantially lower order when compared to
other similar transforms. We also showed that the corresponding
basis functions (directionlets) can be efficiently implemented in the
zerotree-based image compression algorithm instead of the standard
wavelets. The achieved results are significantly better than the re-
sults of the standard compression method, while retaining the same
complexity.
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